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A COMPARISON OF REDUCED-ORDER MODELING APPROACHES USING
ARTIFICIAL NEURAL NETWORKS FOR PDES WITH BIFURCATING

SOLUTIONS∗

MARTIN W. HESS†, ANNALISA QUAINI‡, AND GIANLUIGI ROZZA†

Abstract. This paper focuses on reduced-order models (ROMs) built for the efficient treatment of PDEs having
solutions that bifurcate as the values of multiple input parameters change. First, we consider a method called local
ROM that uses k-means algorithm to cluster snapshots and construct local POD bases, one for each cluster. We
investigate one key ingredient of this approach: the local basis selection criterion. Several criteria are compared
and it is found that a criterion based on a regression artificial neural network (ANN) provides the most accurate
results for a channel flow problem exhibiting a supercritical pitchfork bifurcation. The same benchmark test is
then used to compare the local ROM approach with the regression ANN selection criterion to an established global
projection-based ROM and a recently proposed ANN based method called POD-NN. We show that our local ROM
approach gains more than an order of magnitude in accuracy over the global projection-based ROM. However, the
POD-NN provides consistently more accurate approximations than the local projection-based ROM.

Key words. Navier–Stokes equations, reduced-order methods, reduced basis methods, parametric geometries,
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1. Introduction. We consider the problem of finding a function u ∈ V such that

(1.1) N (u, v;µ) = F(v;µ) ∀ v ∈ V,

where µ ∈ D denotes a point in a parameter domain D ⊂ RM , V a function space, N (·, ·;µ)
a given form that is linear in v but generally nonlinear in u, and F(·) a linear functional
on V . Note that either N or F or both could depend on some or all the components of the
parameter vector µ. We view the problem (1.1) as a variational formulation of a nonlinear
partial differential equation (PDE) or a system of such equations in which M parameters
appear. We are interested in systems that undergo bifurcations, i.e., the solution u of (1.1)
differs in character for parameter vectors µ belonging to different subregions of D. We are
particularly interested in situations that require solutions of (1.1) for a set of parameter vectors
that span across two or more of the subregions of the bifurcation diagram. This is the case, for
example, if one needs to trace the bifurcation diagram.

In general, one could approximate the solutions to (1.1) using a Full Order Method (FOM),
like for example the Finite Element Method or the Spectral Element Method. Let VN be a
N -dimensional subspace that is a subset of V . A FOM seeks an approximation uN ∈ VN
such that

(1.2) Nh(uN , v;µ) = Fh(v;µ) ∀ v ∈ VN ,
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whereNh andFh are the discretized forms forN andF . FOMs are often expensive, especially
if multiple solutions are needed. For this reason, one is interested in finding surrogate methods
that are much less costly. Such surrogates are constructed using a “few” solutions obtained with
the FOM. Here, we are interested in reduced-order models (ROMs) for which one constructs
a low-dimensional approximating subspace VL ⊂ VN of dimension L that still contains an
acceptably accurate approximation uL to the FOM solution uN , and thus also to the solution
u of (1.1). That approximation is determined from the reduced discrete system

(1.3) Nh(uL, v;µ) = Fh(v;µ) ∀ vL ∈ VL

that, if L � N , is much cheaper to solve compared to (1.2). We refer to approach (1.3) as
global ROM, since a single global basis is used to determine the ROM approximation uL at
any chosen parameter point µ ∈ D.

Global ROMs in the setting of bifurcating solutions are considered in the early papers [15,
16, 17, 18] for buckling bifurcations in solid mechanics. More recently, in [26] it is shown that
a Proper Orthogonal Decomposition (POD) approach allows for considerable computational
time savings for the analysis of bifurcations in some nonlinear dissipative systems. Reduced
Basis (RB) methods have been used to study symmetry breaking bifurcations [6, 24] and
Hopf bifurcations [23] for natural convection problems. A RB method for symmetry breaking
bifurcations in contraction-expansion channels has been proposed in [22]. A RB method for
the stability of flows under perturbations in the forcing term or in the boundary conditions,
is introduced in [27]. Furthermore, in [27] it is shown how a space-time inf-sup constant
approaches zero as the computed solutions get close to a bifurcating value. Recent works
have proposed ROMs for bifurcating solutions in structural mechanics [20] and for a nonlinear
Schrödinger equation, called Gross–Pitaevskii equation [19], respectively. Finally, we would
like to mention that machine learning techniques based on sparse optimization have been
applied to detect bifurcating branches of solutions for a two-dimensional laterally heated cavity
and Ginzburg-Landau model in [2, 12], respectively. Finding all branches after a bifurcation
occurs can be done with deflation methods (see [21]), which require introducing a pole at each
known solution. In principle, the ROM approaches under investigation here can be combined
with deflation techniques.

In a setting of a bifurcation problem (i.e., D consists of subregions for which the cor-
responding solutions of (1.1) have different character), it may be the case that L, although
small compared to N , may be large enough so that solving system (1.3) many times becomes
expensive. To overcome this problem, in [7] we proposed a local ROM approach. The idea
is to construct several local bases (in the sense that they use solutions for parameters that
lie in subregions of the parameter domain), each of which is used for parameters belonging
to a different subregion of the bifurcation diagram. So, we construct K such local bases
of dimension Lk, each spanning a local subspace VLk

⊂ VN . We then construct K local
reduced-order models

(1.4) N (uLk
, v;µ) = F(v;µ) ∀ v ∈ VLk

for k = 1, . . . ,K

that provide acceptably accurate approximations uLk
to the solution u of (1.1) for parameters

µ belonging to different parts of the bifurcation diagram. A key ingredient in this approach is
how to identify which local basis should be used in (1.4) to determine the corresponding ROM
approximation for any parameter point µ ∈ D that was not among those used to generate the
snapshots. Several criteria are proposed and compared for a two-parameter study in Section 3.1.
To the best of our knowledge, no work other than [7] addresses the use of local ROM basis
for bifurcation problems. This is the continuation of previous work on model reduction with
spectral element methods [10] and including parametric variations of the geometry [8, 9].
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This paper aims at comparing one global ROM approach, our local ROM approach with
the “best” criterion to select the local basis, and a recently proposed RB method that uses
neural networks to accurately approximate the coefficients of the reduced model [11]. This
third method is referred to as POD-NN. The global ROM as explained in, e.g., uses the most
dominant POD modes of a uniform snapshot set over the parameter domain. The dominant
modes define the projection space for every parameter evaluation of interest and is in this
sense global with respect to the parameter space. See, e.g., [13] for more details. Like the
global ROM, the POD-NN employs the most dominant POD modes. However, the difference
is that the coefficients of the snapshots in the ROM expansion are used as training data for an
artificial neural network. The local ROM first employs a classification ANN to determine the
corresponding cluster of a parameter location, but this can be improved upon with a regression
ANN using the relative errors of the local ROMs at the snapshot locations as training data. As
a concrete setting for the comparison, we use the Navier-Stokes equations and in particular
flow through a channel with a contraction.

The outline of the paper is as follows. In Section 2, we briefly present the Navier-Stokes
equations and consider a specific benchmark test. Section 3 reports the comparison of many
local basis selection criteria for the local ROM approach and the main comparison of the three
ROM approaches. Concluding remarks are provided in Section 4.

2. Application to the incompressible Navier-Stokes equations. The Navier-Stokes
equations describe the incompressible motion of a viscous, Newtonian fluid in the spatial
domain Ω ⊂ Rd, d = 2 or 3, over a time interval of interest (0, T ]. They are given by

(2.1)
∂u

∂t
+ (u · ∇u)− ν∆u+∇p = 0 in Ω× (0, T ]

∇ · u = 0 in Ω× (0, T ],

where u and p denote the unknown velocity and pressure fields, respectively, and ν > 0
denotes the kinematic viscosity of the fluid. Note that there is no external body force because
we will not need one for the specific benchmark test under consideration.

Problem (2.1) needs to be endowed with initial and boundary conditions, e.g.:

u = u0 in Ω× {0}(2.2)
u = uD on ∂ΩD × (0, T ](2.3)

−pn+ ν
∂u

∂n
= g on ∂ΩN×, (0, T ],(2.4)

where ∂ΩD ∩ ∂ΩN = ∅ and ∂ΩD ∪ ∂ΩN = ∂Ω. Here, u0, uD, and g are given and
n denotes the unit normal vector on the boundary ∂ΩN directed outwards. In the rest of this
section, we will explicitly denote the dependence of the solution of the problem (2.1)–(2.4) on
the parameter vector µ.

Let L2(Ω) denote the space of square integrable functions in Ω and H1(Ω) the space of
functions belonging to L2(Ω) with first derivatives in L2(Ω). Moreover, let

V :=
{
v ∈ [H1(Ω)]d : v = uD on ∂ΩD

}
,

V0 :=
{
v ∈ [H1(Ω)]d : v = 0 on ∂ΩD

}
.
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The standard variational form corresponding to (2.1)–(2.4) is: find (u(µ), p(µ)) ∈ V ×L2(Ω)
satisfying the initial condition (2.2) and

(2.5)

∫
Ω

∂u(µ)

∂t
· v dx +

∫
Ω

(u(µ) · ∇u) · v dx−
∫

Ω

p(µ)∇ · v dx

=

∫
∂ΩN

g · v dx, ∀v ∈ V0∫
Ω

q∇ · u(µ) dx = 0, ∀ q ∈ L2(Ω).

Problem (2.5) constitutes the particular case of the abstract problem (1.1) we use for the
numerical illustrations.

We consider a benchmark test that has been widely studied in the literature: channel flow
through a narrowing of width w; see, e.g., [3, 4, 5, 14] and the references cited therein. The
2D geometry under consideration is depicted in Figure 2.1. A parabolic horizontal velocity
component with maximum 9

4 and zero vertical component is inscribed on the inlet at the left
side. At the top and bottom of the channel as well as the narrowing boundaries, zero velocity
walls are assumed. The right end of the channel is an outlet, where zero Neumann boundaries
(i.e., g = 0) are assumed. We will let both the narrowing width and the viscosity vary in given
ranges that include a bifurcation.

FIG. 2.1. Steady state solutions for kinematic viscosity ν = 0.1 and orifice width w = 0.5. Shown is the
horizontal component of the velocity. The two stable solutions can be characterized by an attachment to the upper
and lower wall, respectively.

The Reynolds number Re can be used to characterize the flow regime. For the chosen
data, we have Re = 9/(4ν), since the characteristic length has been set to one. As the
Reynolds number Re increases from zero, we first observe a steady symmetric jet with two
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recirculation regions downstream of the narrowing that are symmetric about the centerline. As
Re increases, the recirculation length progressively increases. At a certain critical value Recrit,
one recirculation zone expands whereas the other shrinks, giving rise to a steady asymmetric jet.
This asymmetric solution remains stable as Re increase further, but the asymmetry becomes
more pronounced. The configuration with a symmetric jet is still a solution, but is unstable [25].
Snapshots of the stable solutions for kinematic viscosity ν = 0.1 and orifice width w = 0.5
are illustrated in Figure 2.1. This loss of symmetry in the steady solution as Re changes is a
supercritical pitchfork bifurcation [1].

Because we are interested in studying a flow problem close to a steady bifurcation
point, our snapshot sets include only steady-state solutions [7]. To obtain the snapshots, we
approximate the solution of problem (2.5) by a time-marching scheme that we stop when
sufficiently close to the steady state, e.g., when the stopping condition

‖un
N − u

n−1
N ‖L2(Ω)

‖un
N‖L2(Ω)

< tol

is satisfied for a prescribed tolerance tol > 0, where n denotes the time-step index.

3. Numerical results. We conduct a parametric study for the channel flow where we
let the the viscosity ν (physical parameter) vary in [0.1, 0.2] and the narrowing width w
(geometric parameter) vary in [0.5, 1.0].

We choose the Spectral Element Method (SEM) as FOM. For the spectral element
discretization, the SEM software framework Nektar++, version 4.4.0, (see https://www.
nektar.info/) is used. The domain is discretized into 36 triangular elements as shown
in Figure 3.1. Modal Legendre ansatz functions of order 12 are used in every element
and for every solution component. This results in 4752 degrees of freedom for each of
the horizontal and vertical velocity components and the pressure for the time-dependent
simulations. For temporal discretization, an IMEX scheme of order 2 is used with a time-step
size of ∆t = 10−4; typically 105 time steps are needed to reach a steady state.

FIG. 3.1. The 36 triangular elements used for spatial approximation.

Figure 3.2 shows a bifurcation diagram: the vertical component of the velocity at the point
(3.0, 1.5) computed by SEM is plotted over the parameter domain. The reference snapshots
have been computed on a uniform 40× 41 grid. Notice that Figure 3.2 reports only the lower
branch of asymmetric solutions.

In [7], we presented preliminary results obtained with our local ROM approach for a
two-parameter study related to the channel flow. We showed that two criteria to select the
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FIG. 3.2. Bifurcation diagram of the channel with variable width and viscosity: vertical component of the
velocity computed by SEM close to steady state and evaluated at the point (3.0, 1.5). Color encodes the vertical
velocity component.

local ROM basis that work well for one-parameter studies fail for the two-parameter case,
in the sense that they provide a poor reconstruction of the bifurcation diagram. Section 3.1
addresses the need to find an accurate and inexpensive criterion to assign the local ROM basis
for a given parameter µ in a multi-parameter context.

The comparison for global ROM, local ROM, and POD-NN is reported in Section 3.2.

3.1. Comparing criteria to select the local basis in the local ROM approach. For our
local ROM approach, we sample 72 snapshots and divide them into 8 clusters using k-means
clustering. The number of clusters is chosen according to the minimal k-means energy. For
more details, we refer to [7].

First, we consider the two criteria presented in [7], namely the distance to parameter
centroid and the distance to the closest snapshot location. The first criterion entails finding the
closest parameter centroid and using the corresponding local ROM basis. The second criterion
finds the closest snapshot location to the given parameter vector µ and the local ROM basis
that includes this snapshot is considered. The bifurcation diagrams reconstructed by the local
ROM approach with these two criteria are compared in Figure 3.3. The distance to parameter
centroid criterion does not manage to recover the bifurcation diagram well and this seems
largely due to the local ROM assignment scheme; see Figure 3.3 (top). In the bifurcation
diagram corresponding to the distance to the closest snapshot location, we observe several
jumps when moving from one cluster to the next; see Figure 3.3 (bottom). These jumps, which
correspond to large approximation errors, can perhaps be better appreciated from another view
of the same bifurcation diagram shown in Figure 3.4. Next, we will try to reduce the jumps.

To alleviate the bad approximation in the transition regions between two clusters (i.e.,
local ROMs), we introduce overlapping clusters. In particular, the collected snapshots of
a cluster from the k-means algorithm undergo a first POD and are then enriched with the
orthogonal complement of neighboring snapshots according to the sampling grid. Then, a
second POD with a lower POD tolerance defines the ROM ansatz space. The corresponding
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FIG. 3.3. Local ROM: bifurcation diagram reconstructed with basis selection criterion distance to parameter
centroid (top) and distance to the closest snapshot location (bottom). Different colors are used for different clusters.

bifurcation diagram is shown in Figure 3.5. We observe that several jumps have been smoothed
out; compare Figure 3.5 (top) with Figure 3.4. The mean approximation error reduces by
about an order of magnitude thanks to the overlap.

Although the overlapping clusters lead to a better reconstruction of the bifurcation diagram,
the result is still not satisfactory. Thus, we propose an alternative selection criterion that uses an
artificial neural network (ANN). The ANN is trained using the k-means clustering as training
information and enforcing a perfect match at the snapshot locations with the corresponding
cluster. This is a classification problem, implemented in Keras Tensorflow. The ANN is
designed as multilayer perceptron with 4 layers, the first layer having just two nodes (or
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FIG. 3.4. Different view of the bifurcation diagram shown in Figure 3.3 (bottom).

“neurons”) taking the two dimensional parameter values. The two inner layers are big (2048
and 1024 nodes, respectively), while the last layer corresponds to the number of clusters, so 8
in this case. For the first three layers a ReLU activation function is used, while for the last
layer activation function is a softmax. The perfect match can be enforced by either running
the training as long as the training data can be exactly matched or using Keras early stopping
with an outer loop checking for a match.

Figure 3.6 shows the bifurcation diagram reconstructed with the ANN selection criterion.
We observe a better reconstruction of the bifurcation diagram; compare Figure 3.6 with
Figure 3.3 and 3.5.

For a more quantitative comparison, we run 4 tests. The tests differ in the number of
samples and whether cluster overlapping is used. The specifications of each test are reported
in Tables 3.1 and 3.2, which list the relative errors evaluated over the 40× 41 reference grid
in the L2 and L∞ norms, respectively. Three local basis selection criteria are considered:
distance to parameter centroid, distance to the closest snapshot location, and ANN. Tables 3.1
and 3.2 confirm that the overlapping cluster represent an improvement over non-overlapping
clusters. This is true for all three criteria, but in particular for the distance to parameter centroid
criterion. Thus, for tests 3 and 4 we only used overlapping clusters. We notice that the ANN
criterion outperforms the other two criteria in all the tests, both in the L2 and L∞ norms.
However, the margin of improvement becomes smaller as the number of samples increases.
Tables 3.1 and 3.2 also report the mean relative error for an optimal cluster selection, which is
explained next.

By “optimal cluster selection” we address the question of how parameter points are
optimally associated with an already given clustering. Figure 3.7 shows the optimal cluster
selection. This optimal selection can only be obtained from a fine grid of reference solutions.
Thus it is usually not available. The reason why we report it is because some interesting
conclusions can be drawn from it. First, the best possible clustering does not have contiguous
clusters. This is in contrast to the clusters created by the k-means algorithm, which are
contiguous in the parameter space in all of our tests. Second, the best possible approximation
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FIG. 3.5. Local ROM with basis selection criterion distance to the closest snapshot location and overlapping
clusters: two views of the reconstructed bifurcation diagram. Different colors are used for different clusters.

at a snapshot location is not necessarily given by the local cluster to which that snapshot is
assigned. Third, there still is a reduction factor of 5–20 in the relative L2 for the velocity error
that could be gained, as one can see when comparing the respective errors for the optimal
cluster and the ANN selection criteria in Tables 3.1 and 3.2.

To get close to the optimum, we adopt the following strategy. We compute relative errors
of all local ROMs at all snapshot locations. This operation is performed offline and is not
expensive since the exact solution at the snapshot locations is available. The relative errors
can be used as training data for an ANN, which means that the ANN training is treated as
a regression and not a classification. Thus, the ANN will approximate relative errors of
each local ROM over the parameter domain. This approximation is used as cluster selection
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FIG. 3.6. Local ROM with basis selection selection that uses the ANN selection criterion: reconstruction of the
bifurcation diagram.

TABLE 3.1
Local ROM with three different basis selection: mean relative L2 errors for the velocity over all reference

parameter points; 1640 on a uniform 40× 41 grid.

Test 1 Test 2 Test 3 Test 4

samples 72 72 110 240
uniform grid 8× 9 8× 9 10× 11 15× 16
overlapping clusters yes no yes yes
parameter centroid mean 0.0294 0.0632 0.1085 0.0559
distance snapshot mean 0.0241 0.0295 0.1011 0.0227
ANN mean 0.0238 0.0273 0.1002 0.0223
optimum 0.0046 0.0106 0.0048 0.0092

criterion. In this procedure, it is important to normalize the data. Here, we use the inverse
relative error and normalize the error vectors at each snapshot location. We note that the
training time for the ANN increases, but is still well below the ROM offline time, i.e., 30
minutes vs. several hours. The ROM offline time is dominated by computing the affine
expansion of the trilinear form. The computational cost grows with the cube of the reduced
order model dimension. This makes the localized ROM much faster than the global ROM as,
for example, the global ROM might have dimension of 40 while each of the 8 local ROMs
has a dimension of about 10. We found it impossible to quantify the training cost of an ANN.
The performance of the stochastic gradient employed in the ANN training varied significantly
over multiple runs and required outer loops to check the accuracy. Thus, the given measure of
30 minutes vs. several hours is only our experience with this particular model and probably
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TABLE 3.2
Local ROM with three different basis selection: mean relative L∞ errors for the velocity over all reference

parameter points; 1640 on a uniform 40× 41 grid.

Test 1 Test 2 Test 3 Test 4

samples 72 72 110 240
uniform grid 8× 9 8× 9 10× 11 15× 16
overlapping clusters yes no yes yes
parameter centroid mean 0.0275 0.0600 0.0970 0.0538
distance snapshot mean 0.0230 0.0284 0.0908 0.0217
ANN mean 0.0227 0.0263 0.0899 0.0214
optimum 0.0044 0.0101 0.0045 0.0088
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FIG. 3.7. Optimal cluster selection. Once again, different colors are used for different clusters.

cannot be generalized.
We consider test 3 (10× 11 sampling grid, overlapping clusters) to assess two variants

of the regression ANN, which differ in how the training is done. One variant takes all
clusters into account simultaneously and is called “regression ANN”. It generates a mapping
from R2 7→ R8, i.e., the two dimensional parameter domain to the expected errors of the
clusters. The second variant treats each clusters independently and is called “regression
ANN, independent local ROMs”. It generates eight mappings from R2 7→ R, i.e., one
for each cluster. Table 3.3 reports the mean relative L2 and L∞ errors for the velocity.
Interestingly, taking all clusters into account simultaneously (“regression ANN”) is about 10%
more accurate than considering each cluster separately (“regression ANN, independent local
ROMs”). Moreover, we observe that the mapping snapshot location to errors of local ROMs
holds useful information and the ANN consistently gets closest to the optimum. Table 3.3
reports also the errors obtained with the Kriging DACE software* and with simply taking the
cluster, which best approximates the closest snapshot. The closest snapshot is determined in
parameter domain with the Euclidean norm. This is an easily implementable tool, which still

*Kriging DACE – Design and Analysis of Computer Experiments, http://www.omicron.dk/dace.
html.
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performs better than the distance to the parameter centroid; see [7]. From Table 3.3, we see
that this simple criterion performs only 15% to 20% worse and is very cheap to evaluate.

TABLE 3.3
Local ROM with different basis selection: mean relative L2 and L∞ errors for the velocity over all reference

parameter points; 1640 on a uniform 40× 41 grid.

mean L2 error mean L∞ error

optimum 0.0048 0.0045
regression ANN 0.0068 0.0064
regression ANN, independent local ROMs 0.0076 0.0071
Kriging DACE 0.0077 0.0073
distance to next best-approx. snapshot 0.0081 0.0077

3.2. Comparing the global ROM, local ROM, and POD-NN approaches. In the pre-
vious section, we learned that the regression ANN criterion outperforms all other local basis
selection criteria. In this section, we compare the local ROM approach with the regression
ANN criterion to our global ROM approach and the POD-NN over the reconstruction of the
bifurcation diagram.

Table 3.2 reports the mean relative L2 and L∞ errors for the velocity for the three
approaches under consideration. We consider four different numbers of samples: 42, 72, 110,
and 240. It can be observed that the global ROM shows a slow convergence, not even 7%
accuracy is reached with the finest sampling grid. The local ROM with regression ANN cluster
selection shows no distinctive convergence behavior, which might indicate that the accuracy
saturates at lower snapshot grid sizes. The POD-NN shows the fastest convergence, reaching
about 0.3% error with the finest sampling grid. We note that the POD-NN training did not
take overfitting into account. Overfitting occurs when the training data is more accurately
approximated than the actual data of interest. It can be checked with having a validation set,
whose accuracy is measured independently and not included in the training. Training can be
stopped when the training data is more accurately approximated than the validation set.

TABLE 3.4
Comparison of global ROM, local ROM and POD-NN for four snapshot grids.

mean L2 error mean L∞ error

42 snapshots global ROM 3.7022 3.1120
local ROM + regression ANN 0.0510 0.0486
POD-NN 0.0108 0.0104

72 snapshots global ROM 0.6970 0.5831
local ROM + regression ANN 0.0103 0.0098
POD-NN 0.0080 0.0075

110 snapshots global ROM 0.1044 0.0948
local ROM + regression ANN 0.0068 0.0064
POD-NN 0.0059 0.0053

240 snapshots global ROM 0.0762 0.0734
local ROM + regression ANN 0.0101 0.0096
POD-NN 0.0032 0.0027
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Several remarks are in order.
REMARK 3.1. The data reported in Table 3.2 concerning the local ROM with regression

ANN cluster selection and the POD-NN are sensitive to the neural network training. In
addition, the data for local ROM approach are sensitive to the POD tolerances are changed.
Nonetheless, Table 3.2 provides a general indication of the performance of each method in
relation to the other two.

REMARK 3.2. A rigorous comparison in term of computational times is not possible
because the different methods are implemented in different platforms. However, we can
make some general comments. The POD-NN method has a significant advantage in terms of
computational time: one does not need to assemble the trilinear reduced form associated to
the convective term, which is our simulations takes about 1–3 hours. The time required for the
POD-NN evaluation in the online phase is virtually zero, while projection methods need to do
a few iterations of the reduced fixed point scheme. That takes about 10–30 s. On the other
hand, the POD-NN required the training of the ANN. However, in our simulations that takes
only about 20 minutes.

REMARK 3.3. We also investigated a local POD-NN, i.e., we combined a k-means
based localization approach with the POD-NN. However, this led to significantly larger errors
than the global POD-NN method. In general, the error of a local POD-NN approach was in
the range of the error of the “local ROM + regression ANN”. Thus, we did not pursue this
approach any further.

4. Concluding remarks. We focused on reduced-order models (ROMs) for PDE prob-
lems that exhibit a bifurcation when more than one parameter is varied. For a particular
fluid problem that features a supercritical pitchfork bifurcation under variation of Reynolds
number and geometry, we investigated projection-based local ROMs and compared them to
an established global projection-based ROM as well as an emerging artificial neural network
(ANN) based method called POD-NN. We showed that k-means based clustering, transition
regions, cluster-selection criteria based on best-approximating clusters and ANNs gain more
than an order of magnitude in accuracy over the global projection-based ROM. Upon exam-
ining the accuracy of POD-NN, it became obvious that the POD-NN provides consistently
more accurate approximations than the local projection-based ROM. Nevertheless, the local
projection-based ROM might be more amenable to the use of reduced-basis error estimators
than the POD-NN. This could be the object of future work.
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