
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 57, pp. 17–34, 2022.
Copyright © 2022, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol57s17

ON THE TANGENTIAL CONE CONDITION FOR
ELECTRICAL IMPEDANCE TOMOGRAPHY∗

STEFAN KINDERMANN†

Abstract. We state some sufficient criteria for the tangential cone conditions to hold for the electrical impedance
tomography problem. The results are based on Löwner convexity of the forward operator. As a consequence, we
show that for conductivities that satisfy various properties, such as Hölder source conditions, finite-dimensionality, or
certain monotonicity criteria, the tangential cone condition is verified.
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1. Introduction. The electrical impedance tomography (EIT) problem is a classical
inverse problem where the aim is to extract information about the conductivity from boundary
measurements of current-voltage pairs. Starting with the definition of the problem in the
seminal paper of Calderón [4], it has been investigated in various directions and now serves as
a paradigmatic instance of a parameter identification problem from boundary measurements.

The common mathematical formulation is to consider solutions of the boundary value
problem on a Lipschitz domain Ω,

div(γ∇u) = 0 in Ω, u = f on ∂Ω.(1.1)

The data for the inverse problem are multiple or infinitely many pairs of Cauchy data
(f, γ(∂/∂n)u|∂Ω) on the boundary, and the interest is to recover the conductivity γ(x) in
the interior Ω. As is typical for such an identification problem with only boundary data,
this leads under the usual circumstances to a nonlinear severely ill-posed problem; without
strong restrictions on the conductivity, one can at best only expect conditional logarithmic
stability [13]. Various classical uniqueness and stability results are collected, for example,
in [2] or [13].

In the following, we assume that the unknown conductivity can be written as a perturbation
δγ of a known background, which we take without loss of generality as 1. Thus, we assume
throughout that

(1.2) γ(x) = 1 + δγ(x), α ≤ γ(x) ≤ α, a.e. in Ω,

with positive constants α and α to ensure ellipticity and stability of the partial differential
equation.

In order to state the problem, it is convenient to frame it into operator-theoretic language.
The above-mentioned Cauchy data (in the case of complete data) are equivalent to knowledge
of the Dirichlet-to-Neumann (DtN) operator. We denote by Λγ the DtN operator for (1.1), i.e.,
the mapping

Λγ : H1/2(∂Ω)→ H−1/2(∂Ω)

f → γ
∂

∂n
u

∣∣∣∣
∂Ω

,
(1.3)
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where u is a solution to (1.1), and, as defined below, H1/2 is the usual fractional Sobolev
space with constants factored out. We furthermore introduce the parameter-to-data map

(1.4) F (γ) := Λγ − Λ1,

where Λγ is the DtN map for (1.1) and Λ1 is that for γ = 1. Since we are mainly interested
in perturbations of the constant conductivity, we have subtracted the (known) background
influence of Λ1 from the data. Solving the inverse problem is then equivalent to inverting F .
We give a precise definition of the associated spaces X and Y in the mapping F : X → Y in
the next section.

The main theme of this article concerns not the solution of this problem but the investiga-
tion of the nonlinearity of F . This is highly relevant when applying regularization methods, in
particular, iterative ones. Indeed, the convergence theory of iterative regularization methods
such as Landweber’s method requires some restrictions that quantify the deviation of the prob-
lem from a linear one. In this work, we focus on the well-known tangential cone conditions
and their variants (cf. [7, 16, 18]).

For a general inverse problem with a differentiable parameter-to-data map F between
Hilbert spaces, the so-called strong tangential cone condition [7, 18] is satisfied if, with F ′

denoting the Fréchet derivative of F , there is an η, 1 > η > 0, such that

(stc) ‖F (x̃)− F (x)− F ′[x](x̃− x)‖ ≤ η‖F (x̃)− F (x)‖

holds for all x̃ and x in a neighborhood of some x0. A weaker version, the weak tangential
cone condition [18], holds if an η, 1 > η > 0, exists such that

(wtc) (F (x̃)− F (x)− F ′[x](x̃− x), F (x̃)− F (x))Y ≤ η‖F (x̃)− F (x)‖2.

Moreover, the weak tangential cone condition with η = 1 reads as

(qcon) (F ′[x](x̃− x), F (x̃)− F (x))Y ≥ 0,

which yields a weaker condition than (wtc) that has been proposed in [16]. Note that by the
parallelogram identity, the inequalities (wtc) and (qcon) may be equivalently rewritten as

‖F (x̃)− F (x)− F ′[x](x̃− x)‖2

≤ (2η − 1)‖F (x̃)− F (x)‖2 + ‖F ′[x](x̃− x)‖2,(1.5)

where η = 1 in the case of (qcon).
These inequalities are central to the convergence theory of the nonlinear Landweber

method and many other iterative regularization methods. They constitute a replacement for
coercivity estimates, which cannot exist in the ill-posed case. It is a classical result that
(under some standard additional assumptions) the strong tangential cone condition with η ≤ 1

2
implies strong convergence of the Landweber method [7, 14]. Similarly, the weak tangential
cone condition [18] implies the nonexpansivity of the iteration, and, in particular, weak
(subsequential) convergence of the iterates. (Of course, all this is in connection with appropriate
stopping rules.) The condition (qcon) implies that the iterates stay in a neighborhood of the
solution, which also yields weak (subsequential) convergence [16].

It is surprising that, in view of its importance, the tangential cone conditions for the
impedance tomography problem could only be verified in a few special cases. For instance,
Lechleiter and Rieder [17] have proven (stc) in a semidiscrete case, essentially by using a
stability result for the discrete problem. Moreover, de Hoop, Qiu, and Scherzer [5] have
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verified (stc) for a class of piecewise constant conductivities being constant on finitely many
regions. The proof is based on a Lipschitz stability result of Alessandrini and Vessella [1]. In
both cases, the stability constants might become quite large; thus, the cone conditions can in
practice only be theoretically verified in a very narrow neighborhood of the true solution.

Except for these few cases, the validity of the above tangential cone conditions is com-
pletely open, which is quite puzzling given the fact that the Landweber method has successfully
been applied to the impedance tomography problem in many situations. Our article aims to
gain further understanding of this fact (though without completely resolving it) by analyzing
and establishing sufficient conditions for the tangential cone conditions. The main contribution
is that a condition of the form

‖F ′[γ†](γ − γ†)2‖ ≤ C‖F ′[γ†](γ − γ†)‖

suffices; see (4.3). This is established by making use of Löwner convexity and related estimates
for the EIT problem.

REMARK 1.1. It is important to note that, to prove the convergence of the Landweber
method, the above-mentioned tangential cone conditions do not have to hold for all elements
in a neighborhood, but only for x̃ being the iterates of the method and x the exact solution. In
this sense, we do not aim to prove (stc) or (wtc) for all x̃ and x but only for specific ones that
satisfy, for instance, certain monotonicity conditions.

One result that is probably most relevant in practice is that the tangential cone conditions
are satisfied for conductivities that satisfy certain monotonicity properties (e.g., a purely
positive perturbation of the background conductivity). Further results concern a verification
of (stc) for elements in a finite-dimensional space of if a Hölder source condition holds.

The article is organized as follows. In the next section we define the precise setup and
provide some mathematical background on the Löwner ordering. In Section 3, we state some
known Löwner convexity results together with a new operator-theoretic proof that allows us to
obtain new, slightly improved inequalities. These results are used in Section 4 to state new
sufficient conditions for the tangential cone conditions. We conclude with a discussion in
Section 5.

2. Problem setup and operator estimates. We formulate some standard assumptions
and specify the notation. Let Ω ⊂ Rn be a Lipschitz domain. We make use of the space of
L2-vector fields:

L2(Ω)n :=

{
v : Ω→ Rn

∣∣∣∣ ∫
Ω

|v(x)|2 <∞
}
.

The Dirichlet data f are canonically chosen in H1/2, which is the usual fractional Sobolev
space with index 1

2 , or, alternatively, the space of all traces ofH1(Ω)-functions. Since constant
functions f are in the nullspace of Λγ , in the sequel we only consider the associated subspace
with constants factored out. Sometimes this space is denoted as H1/2

� ; for simplicity of
notation, we simply write

H1/2(∂Ω) =

{
f ∈ H1/2(∂Ω) :

∫
∂Ω

f dσ = 0

}
.

The corresponding dual space is denoted by H−1/2(∂Ω), and the associated dual pairing in
H−1/2 ×H1/2 is denoted by 〈· , ·〉.

Given f ∈ H1/2, the associated boundary value problem

∆u1,f = 0 in Ω, u1,f = f on ∂Ω
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has a unique solution in H1(Ω). Moreover, by the Poincaré inequality, the mapping f →
∇u1,f is injective from H1/2(∂Ω)→ L2(Ω)n, such that we may define the H1/2(∂Ω)-norm
in this paper as

‖f‖H1/2(∂Ω) := ‖∇u1,f‖L2(Ω)n .

Moreover, we define uγ,f as the solution in H1(Ω) of the problem (1.1):

div(γ∇uγ,f ) = 0 in Ω, uγ,f = f on ∂Ω.

For a given conductivity γ satisfying (1.2), the DtN operator Λγ in (1.3) is a continuous
operator. It is well known that the DtN operators can be rewritten in terms of energy integrals:
defining F by (1.4), we have for γ1 and γ2 satisfying (1.2) that (cf. [13])

(2.1) F (γ1)− F (γ2) = Λγ1 − Λγ2 ,

with

(2.2) 〈[Λγ1 − Λγ2 ]f, g〉 =

∫
Ω

(γ1 − γ2)∇uγ1,f · ∇uγ2,g dx, ∀ f, g ∈ H1/2(∂Ω).

Moreover, the DtN map Λ(γ) (and hence the parameter-to-solution map F (γ)) is Fréchet-
differentiable with respect to the L∞-norm of γ (cf., e.g., [17]), and the derivative can be
expressed as

F ′[γ1]w = Λ′γ1(w),(2.3)

〈Λ′γ1(w)f, g〉 =

∫
Ω

w∇uγ1,f · ∇uγ1,g dx, w ∈ L∞(Ω).(2.4)

Our analysis is based on the following assumptions, which we assume to hold for the rest
of the article.

ASSUMPTION 1.
• We assume that we are given a (finite or infinite) sequence of orthonormal Dirichlet

data (fi)i∈I , fi ∈ H1/2(∂Ω).
• We set as the domain of definition of the parameter-to-data map

D(F ) := {γ ∈ L∞(Ω) | α ≤ γ ≤ α, and (2.5) holds},

where

(2.5)
∑
i,j∈I

|〈[Λγ − Λ1]fi, fj〉|2 <∞.

The first assumption is not much of a restriction, as the Dirichlet data are part of the
experimental design and can be chosen to be orthonormalized. Also the second one is not
severe because (2.5) holds if we have only finitely many Dirichlet data or, in the case of
infinitely many fi, if the deviations from the background conductivity δγ have a common
compact support inside of Ω. (By a standard inclusion estimate, e.g., [3, 12], this implies
that the eigenvalues of Λγ − Λ1 are exponentially decaying and hence summable). This is
also a usual assumption in the impedance tomography problem. We note that we do not a
priori require that the fi form a complete basis in H1/2(∂Ω). Thus, much of our analysis is
also valid in the case of finitely many measurements or measurements on only a part of the
boundary.
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Associated to the set of Dirichlet data, we set

VD := span(fi)i∈I ⊂ H1/2(∂Ω).

The quadratic form 〈(Λγ − Λ1)f, g〉 associated to the DtN mapping defines a linear operator
Λγ − Λ1 : VD → V ′D. Hence, the parameter-to-solution map can be defined as a mapping

F : D(F ) ⊂ X := L∞(Ω)→ Y := L(VD, V
′
D),

γ → Λγ − Λ1,

with the norm

‖F (γ)‖2Y : =
∑
i,j∈I

|〈[Λγ − Λ1]fi, fj〉|2,

and where L(X,Y ) denotes the space of bounded linear operators from X → Y . Introducing
the Riesz isomorphism I : H−1/2 → H1/2 and PVD the orthogonal projection onto VD, we
may write the norm

‖F (γ)‖2Y =
∑
i,j∈I

∣∣(I[Λγ − Λ1]fi, fj)H1/2,H1/2

∣∣2 = ‖PVDI[Λγ − Λ1]‖2HS(VD)

as the Hilbert–Schmidt norm of PVDI[Λγ − Λ1] for the operator mapping from VD → VD.
Thus, the image space is equipped with a Hilbert space structure. Note that for self-adjoint
compact operators, the Hilbert–Schmidt norm is the sum of squares of the eigenvalues. We
will denote by ‖ · ‖HS the Hilbert–Schmidt norm (omitting the underlying spaces) and by ‖ · ‖2
the operator norm for a linear operator from X → Y . Moreover, for functions in L∞, we set
‖ · ‖∞ = ‖ · ‖L∞ .

REMARK 2.1. By our choice of the H1/2-norm, the Riesz isomorphism I is nothing but
the inverse of the DtN operator Λ1 (i.e., the Neumann-to-Dirichlet map): Indeed, by definition,
z = Ig holds if and only if, for all f ∈ H1/2,

(z, f)H1/2,H1/2 = 〈g, f〉H−1/2,H1/2 .

The left-hand side can be written by the variational formulation of ∆u1,z = 0, (∂/∂n)u1,z =
Λ1z as

(z, f)H1/2,H1/2 = (∇u1,z,∇u1,f )L2(Ω)n = 〈Λ1z, f〉H−1/2,H1/2 ,

which yields that z = Λ−1
1 g.

For later use we also recall the Löwner ordering for self-adjoint operators on a Hilbert
space H: we have

A ≤L B ⇐⇒ (Ax, x)H ≤ (Bx, x)H , ∀ x ∈ H.

A useful property of this ordering is that, for Hilbert–Schmidt operators,

(2.6) 0 ≤ A ≤L B =⇒ ‖A‖HS ≤ ‖B‖HS.

This follows from Weyl’s inequality for the eigenvalues and since the Löwner ordering implies
a corresponding eigenvalue inequality. Moreover, the following result with an arbitrary
bounded operator T and T ∗ its adjoint will be used frequently:

(2.7) A ≤L B =⇒ T ∗AT ≤L T ∗BT.
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3. Löwner convexity results for F . Before we state the main convexity results, we
give the following well-known monotonicity result of the Fréchet derivative; see, e.g., [10,
equation (2.3)]:

LEMMA 3.1. Let γ ∈ D(F ). If w(x) ≥ 0 a.e., w ∈ L∞(Ω), then Λ′γ(w) ≥L 0. In
particular, for w1, w2 ∈ L∞(Ω) with 0 ≤ w1 ≤ w2 a.e. in Ω, and any γ ∈ D(F ), we have
the estimate

‖Λ′γ(w1)‖Y ≤ ‖Λ′γ(w2)‖Y .(3.1)

A main tool for estimates of the tangential cone condition is the following classical
structural convexity property of the forward map. According to Harrach and Ullrich [10],
the result goes back to Ikehata [11] and Kang, Seo, and Sheen [15]. In full generality, the
statement can be found in the work of Harrach and Ullrich [10, Lemma 3.1] and Harrach and
Seo [9, Lemma 2.1], where it is written in terms of the Neumann-to-Dirichlet operator, which,
however, can be easily translated to our setup.

THEOREM 3.2. For any γ, γ† ∈ D(F ), we have

(3.2) 0 ≤L Λ(γ)− Λ(γ†)− Λ′γ(γ − γ†) ≤L Λ′γ

(
|γ − γ†|2

γ†

)
.

We provide a new proof of this known result based on operator-theoretic ideas, which
also allows us to state a slight improvement of the upper bound. Essential in our proof is
Lemma 3.3 below, which might be of interest in itself since it relates gradients of solutions
of (1.1) using simple projection and multiplication operators.

We need a little bit of notation. Define the operator Sγ as the solution operator for the
differential equation in (1.1) with homogeneous Dirichlet condition and given right-hand side,
i.e., for γ satisfying (1.2), we set

Sγ : H−1(Ω)→ H1
0 (Ω),

h→ v,

where v is the solution of

div(γ∇v) = h in Ω, v = 0 on ∂Ω.

By definition, we have that Sγ is the inverse operator to the continuous differential operator
(the symbol • indicates a placeholder)

(3.3) div(γ∇ • ) : H1
0 (Ω)→ H−1(Ω),

i.e., we have

(3.4) div(γ∇ • )Sγ = IH−1→H−1 , Sγ div(γ∇ • ) = IH1
0→H1

0
,

where IX→X denotes the identity operator on X .
Furthermore, for a function κ ∈ L∞(Ω), we define the multiplication operator

(3.5) Mκ : L2(Ω)n → L2(Ω)n, ~f(x)→ κ(x)~f(x).

Note that the multiplication operator satisfies Mκ1Mκ2 = Mκ1κ2 , these operators commute,
and ‖Mκ‖2 ≤ ‖κ‖∞.
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With this notation, we state the following useful lemma.
LEMMA 3.3. For any γ1 and γ2 satisfying (1.2) and any f ∈ H1/2(∂Ω), we have that

the operator

K : L2(Ω)n → L2(Ω)n,

K := I −∇Sγ2 div[(γ2 − γ1) • ]
(3.6)

has a continuous inverse given by

(3.7) K−1 = I +∇Sγ1 div[(γ2 − γ1) • ].

Moreover, we have that the continuous operator Qγ : L2(Ω)n → L2(Ω)n defined by

(3.8) Qγ := M√γ ∇Sγ div[M√γ • ]

is an orthogonal projection operator, and the range of Qγ is orthogonal to the space

(3.9) {z ∈ L2(Ω)n | div(γ1/2z) = 0}.

Finally, we have that

∇uγ2,f =
(
I −

(
M−1√

γ2
Qγ2M

−1√
γ2

)
Mγ2−γ1

)−1∇uγ1,f
=
(
I +

(
M−1√

γ1
Qγ1M

−1√
γ1

)
Mγ2−γ1

)
∇uγ1,f .

(3.10)

Proof. Let K and K−1 be the continuous operators in (3.6) and (3.7), respectively. We
verify that KK−1 = IdL2(Ω)n→L2(Ω)n . Indeed,

KK−1 = I +∇Sγ1 div[(γ2 − γ1) • ]−∇Sγ2 div[(γ2 − γ1) • ](3.11)
− (∇Sγ2 div[(γ2 − γ1)∇Sγ1 div[(γ2 − γ1) • ]]).(3.12)

Using (3.4), the last line (3.12) can be simplified to

− (∇Sγ2 div[(γ2 − γ1)∇Sγ1 div[(γ2 − γ1) • ]])

= − (∇Sγ2 div[γ2∇Sγ1 div[(γ2 − γ1) • ]]−∇Sγ2 div[γ1∇Sγ1 div[(γ2 − γ1) • ]])

= −(∇Sγ1 div[(γ2 − γ1) • ]−∇Sγ2 div[(γ2 − γ1) • ]).

Thus, this cancels with the terms in (3.11), yielding KK−1 = I . In a similar manner we
obtain K−1K = I , which proves that these operators are continuously invertible and inverse
to each other.

Next, we verify that Qγ is idempotent and self-adjoint:

QγQγ = M√γ ∇Sγ div[γ∇Sγ div[M√γ • ]] = M√γ ∇Sγ div[M√γ • ],

where we again used (3.4). The operator is easily seen to be self-adjoint since (div)∗ = −∇,
and both Sγ and M are self-adjoint. Thus, Qγ is an orthogonal projector. Let z be in the
set (3.9). By the weak definition of div, we have that (

√
γz,∇φ)L2(Ω)n = 0 for all φ ∈ H1

0 .
Thus, for arbitrary v ∈ L2(Ω)n,

(Qγv, z)L2(Ω)n = −(∇Sγ div[M√γ v],
√
γz)L2(Ω)n = 0,

since Sγ maps into H1
0 . This proves the statement about the range of Qγv.
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Finally, we verify (3.10). By definition of the inhomogeneous Dirichlet problem, we have
the identity uγ2,f = uγ1,f + w, where w satisfies the homogeneous problem

div(γ2∇w) = −div(γ2∇uγ1,f ) = −div((γ2 − γ1)∇uγ1,f ),

and where we used that uγ2,f solves the problem (1.1) with γ = γ2. Thus,

uγ2,f = [I − Sγ2 div((γ2 − γ1)∇)]uγ1,f .

Applying the gradient yields

∇uγ2,f = (I −∇Sγ2 div[(γ2 − γ1) • ])∇uγ1,f = (I −∇Sγ2 div[Mγ2−γ1 • ])∇uγ1,f .

By the previous results, the operator on the right-hand side is invertible, which, together
with (3.8), yields the result.

Proof of Theorem 3.2. Define

(3.13) B(γ, γ†) := Λ(γ)− Λ(γ†)− Λ′γ(γ − γ†).

Then, from (2.1) and (2.3), it follows that

〈B(γ, γ†)f, f〉 =

∫
Ω

(γ − γ†)∇uγ,f · (∇uγ†,f −∇uγ,f ) dx.

Using (3.10) with γ2 = γ† and γ1 = γ and (3.5), we write this as

〈B(γ, γ†)f, f〉 =
(
Mγ−γ†∇uγ,f ,

[(
I −M−1√

γ†
Qγ†M

−1√
γ†
Mγ†−γ

)
− I
]
∇uγ,f

)
L2(Ω)n

=
(
Mγ−γ†∇uγ,f ,M−1√

γ†
Qγ†M

−1√
γ†
Mγ−γ†∇uγ,f

)
L2(Ω)n

=
(
M−1√

γ†
Mγ−γ†∇uγ,f , Qγ†M−1√

γ†
Mγ−γ†∇uγ,f

)
L2(Ω)n

.(3.14)

Since Qγ† is an orthogonal projector, it satisfies 0 ≤L Qγ† ≤L I. Inserting these inequalities
and making use of (2.7) with T = M−1√

γ†
Mγ−γ† yields the upper and lower bounds. Note

that the upper bound reads(
M−1√

γ†
Mγ−γ†∇uγ,f ,M−1√

γ†
Mγ−γ†∇uγ,f

)
L2(Ω)n

=

∫
Ω

(γ − γ†)2

γ†
|∇uγ,f |2 dx = Λ′γ

(
|γ − γ†|2

γ†

)
.

By rearranging terms and switching γ and γ† in (3.2) using the lower and upper bounds,
we obtain the following two inequalities (cf. [9, 10]):

Λ′γ(γ − γ†) ≤L Λ(γ)− Λ(γ†) ≤L Λ′γ†(γ − γ
†),(3.15)

Λ′γ†

(
γ†

γ
(γ − γ†)

)
≤L Λ(γ)− Λ(γ†) ≤L Λ′γ

(
γ

γ†
(γ − γ†)

)
.(3.16)

REMARK 3.4. We may observe by a Taylor expansion that the middle term in (3.2) can
be written as

− 1
2Λ′′γ(γ† − γ, γ† − γ) + o(‖γ† − γ‖2∞),
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while the right-hand side is

Λ′γ†(|γ
† − γ|2/γ†) + o(‖γ† − γ‖2∞).

By setting γ = γ† + εw for arbitrary w ∈ L∞, and taking the limit, we obtain

(3.17) 0 ≤ −Λ′′γ†(w,w) ≤ 2Λ′γ†

(
|w|2

γ†

)
.

Hence the second derivative of F is always negative definite. A similar negativity result can
be obtained for all even-order derivatives.

For later use, we also establish the following related inequality.
LEMMA 3.5. Let γ, γ† ∈ D(F ) and ξ† := ‖(γ − γ†)/γ†‖∞ ≤ 2. Then we have the

estimates

0 ≤L Λ′γ†(γ − γ
†)− Λ′γ(γ − γ†) ≤L (2 + ξ†)Λ

′
γ

(
|γ − γ†|2

γ†

)
.(3.18)

Proof. DefineA := Λ′γ†(γ−γ
†)−Λ′γ(γ−γ†) . Using Lemma 3.3 with γ1 = γ, γ2 = γ†,

and the shortcut notation

(3.19) M∆γ := M−1√
γ†
Mγ−γ† = M

(γ−γ†)/
√
γ†
,

we find

〈Af, f〉 =

∫
(γ − γ†)(|∇uγ†,f |2 − |∇uγ,f |2) dx

=
(
Mγ−γ†

(
I+M−1√

γ†
Qγ†M

−1√
γ†
Mγ−γ†

)
∇uγ,f ,

(
I+M−1√

γ†
Qγ†M

−1√
γ†
Mγ−γ†

)
∇uγ,f

)
−
(
Mγ−γ†∇uγ,f ,∇uγ,f

)
=
([

2M∆γQγ†M∆γ +M∆γQγ†M∆γ/
√
γ†
Qγ†M∆γ

]
∇uγ,f ,∇uγ,f

)
=
([

2I +M
∆γ/
√
γ†

]
Qγ†M∆γ∇uγ,f , Qγ†M∆γ∇uγ,f

)
,

where we used that Q2
γ† = Qγ† and all operators are self-adjoint. Since ξ† = ‖∆γ/

√
γ†t‖,

we find that

0 ≤L (2− ξ†)I ≤L 2I +M∆γ/(γ†)1/2 ≤L (2 + ξ†)I,

and the lower bound follows as well as the upper bound since Q2
γ† = Qγ† ≤L I .

Improved upper bound. Although it is not needed for the main results, we note that the
upper bound in Theorem 3.2 can be strengthened by a more detailed analysis. The following
is an improvement of the upper bound in (3.2).

THEOREM 3.6. For γ, γ† ∈ D(F ) we have

〈[Λγ − Λγ† − Λ′γ(γ − γ†)]f, f〉 ≤ inf
w∈L2(Ω)n:div(

√
γ†w)=0

‖M
(γ−γ†)/

√
γ†
∇uγ,f − w‖2.

Moreover, the following estimate holds:

〈[Λγ − Λγ† − Λ′γ(γ − γ†)]f, f〉

≤
〈

Λ′γ

(
|γ − γ†|2

γ†

)
f, f

〉
− 〈[PVDIΛγ†PVD ]†PVDI[Λγ − Λγ† ]f, PVDI[Λγ − Λγ† ]f〉.

(3.20)
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Note that [PVDIΛγ†PVD ]† is the pseudoinverse of [PVDIΛγ†PVD ]. In the case of full
measurements, this agrees with (IΛγ†)

−1.
Proof. We use the notation in (3.13) and (3.19). From (3.14) and as Qγ† is an orthogonal

projector, we find that

(3.21) 〈B(γ, γ†)f, f〉 = ‖Qγ†M∆γ∇uγ,f‖2 = inf
w∈Im(Q

γ† )
⊥
‖M∆γ∇uγ,f − w‖2,

where Im(Qγ†)
⊥ is the orthogonal complement of the range of Qγ† . According to (3.9), the

set of w with div((γ†)1/2w) is a subset of Qγ† , which yields the first inequality.
In order to verify (3.20), we take w = wc as

wc =

∞∑
i=1

ci(γ
†)1/2∇uγ†,fi ,

where ci ∈ `2 are coefficients to be specified below. Note that div((γ†)1/2wc) = 0 since
∇uγ†,fi solves (1.1) with γ = γ†. With the definition fc =

∑
i∈I cifi and after expanding

the square, we find that

‖M∆γ∇uγ,f − wc‖2 =

∫
M2

∆γ |∇uγ,f |2 dx− 2

∞∑
i=1

ci

∫
Ω

(γ − γ†)∇uγ,f · ∇uγ†,fi dx

+

∞∑
i,j=1

cicj

∫
γ†∇uγ†,fi · ∇uγ†,fi dx

= 〈Λ′γ((∆γ)2)f, f〉 − 2〈Λγ − Λγ†f, fc〉+ 〈Λγ†fc, fc〉.(3.22)

The last line can be rewritten as

〈Λ′γ((∆γ)2)f, f〉 − 2(I(Λγ − Λγ†)f, PVDfc)H1/2 + (IΛγ†PVDfc, PVDfc)H1/2 ,

because fc = PVDfc by definition. Thus, minimizing over fc yields an upper bound for (3.21),
and the minimizer satisfies the optimality condition

PVDIΛγ†PVDfc = PVDI(Λγ − Λγ†)f.

Inserting this into (3.22) yields the result.
A consequence of Theorem 3.6 is the following result for the error norm.
THEOREM 3.7. Let the same assumptions as in Theorem 3.6 hold. Then there exists a

constant C depending only on α, α, and Ω such that

‖Λγ − Λγ†‖2Y ≤ C
∑
i∈I

〈
Λ′γ

(
|γ − γ†|2

γ†

)
fi, fi

〉
.(3.23)

Proof. Standard elliptic estimates yield with some constants that depend on α, α, and Ω
that

c1‖f‖2H1/2 ≤ 〈Λγ†f, f〉 ≤ c2‖f‖2H1/2 .

Thus, for f ∈ VD and since PVD is an orthogonal projector, we have that

‖f‖2H1/2 ≤ c2〈Λγ†PVDf, PVDf〉 = c2(IΛγ†PVDf, PVDf) = c2(PVDIΛγ†PVDf, f).
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As a consequence, the operator PVDIΛγ†PVD is continuously invertible on VD and

(3.24) ([PVDIΛγ†PVD ]†PVDf, PVDf) ≤ c2‖PVDf‖2H1/2 .

As a consequence of the fact that the right-hand side in (3.20) is positive, we obtain that

〈[PVDIΛγ†PVD ]†PVDI[Λγ − Λγ† ]f, PVDI[Λγ − Λγ† ]f〉 ≤
〈

Λ′γ

(
|γ − γ†|2

γ†

)
f, f

〉
.

Thus, combining this with (3.24) yields, for f ∈ VD,

‖PVDI[Λγ − Λγ† ]f‖2H1/2 ≤
〈

Λ′γ

(
|γ − γ†|2

γ†

)
f, f

〉
.

It is not difficult to see that PVDI[Λγ − Λγ† ] is a self-adjoint operator in VD, which is also
a Hilbert–Schmidt operator by our assumptions. Thus this operator has a countable set of
real eigenvalues λi with associated eigenvectors hi that form an orthonormal system. The
Frobenius norm can be rewritten as

‖PVDI[Λγ − Λγ† ]‖2HS(VD) =
∑
i

λ2
i =

∑
i

‖PVDI[Λγ − Λγ† ]hi‖2H1/2

≤
∑
i

〈
Λ′γ

(
|γ − γ†|2

γ†

)
hi, hi

〉
.

The right-hand side can be interpreted as the trace norm of PVDIΛ′γ(|γ − γ†|2/γ†), and thus
the hi can be replaced by any orthonormal basis, in particular by fi, which completes the
proof.

REMARK 3.8. We note that the norm estimates (3.1) and (3.23) remain valid if the
Y -norm is replaced by the operator norm ‖ · ‖L(H1/2,H−1/2). This follows from the fact that
the inequalities are derived from the Löwner ordering and hold in particular for the largest
eigenvalues, which agree with the operator norm.

4. Tangential cone conditions. We can now state some sufficient conditions for the
tangential cone conditions. As stated in the introduction, we aim to verify the tangential cone
conditions not for all elements in a neighborhood but for specific elements γ and γ†. If the
iterates of a Landweber iteration satisfy these conditions, then convergence can be proven.

We organize our results in three classes: conditions based on (i) source conditions,
(ii) finite-dimensionality, and (iii) monotonicity.

In terms of the forward operator, the upper bound in (3.2) (making additional use of the
nonnegativity in (3.2)) can be written as

‖F (γ)− F (γ†)− F ′[γ](γ − γ†)‖Y ≤
∥∥∥∥F ′[γ]

(
|γ − γ†|2

γ†

)∥∥∥∥
Y

,(4.1)

which obviously shows the helpfulness of finding conditions for the tangential cone conditions.
Using this inequality yields the following result, which serves as the basis for all the following
sufficient conditions.

THEOREM 4.1. Let γ, γ† ∈ D(F ).
1. If, for some ζ < 1, it holds that

(4.2)
∥∥∥∥F ′[γ]

(
|γ − γ†|2

γ†

)∥∥∥∥
Y

≤ ζ‖F ′[γ](γ − γ†)‖Y ,
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then the strong tangential cone condition with η = ζ/(1− ζ) is satisfied. If the same
condition holds with ζ = 1, then the weak tangential cone condition with η ≥ 1

2 is
satisfied.

2. Let ξ† = ‖(γ − γ†)/γ†‖∞ ≤ 2 be satisfied. If for some

θη < θ∗ := α
3 + ξ†
4 + ξ†

it holds that

(4.3) ‖F ′[γ†](|γ − γ†|2)‖Y ≤ θη‖F ′[γ†](γ − γ†)‖Y ,

then the strong tangential cone condition is satisfied with this

η = (3 + ξ†)
θη/α

1− θη/α
.

Proof. Assume that (4.2) holds with ζ < 1. Thus,

‖F ′[γ](γ − γ†)‖Y ≤ ‖F ′[γ](γ − γ†)− (F (γ)− F (γ†))‖Y + ‖F (γ)− F (γ†)‖Y

≤
∥∥∥∥F ′[γ]

(
|γ − γ†|2

γ†

)∥∥∥∥
Y

+ ‖F (γ)− F (γ†)‖Y

≤ ζ‖F ′[γ](γ − γ†)‖Y + ‖F (γ)− F (γ†)‖Y .

From this, we conclude that

‖F ′[γ](γ − γ†)‖Y ≤
1

1− ζ
‖F (γ)− F (γ†)‖Y .

Thus, with (4.1),

‖F (γ)− F (γ†)− F ′[γ](γ − γ†)‖Y ≤
∥∥∥∥F ′[γ]

(
|γ − γ†|2

γ†

)∥∥∥∥
Y

≤ ζ‖F ′[γ](γ − γ†)‖Y ≤
ζ

1− ζ
‖(F (γ)− F (γ†)‖Y .

In the case of ζ = 1, we derive the weak cone condition for η ≥ 1
2 easily from (1.5) and the

upper estimate (3.2).
Consider now the case that (4.3) holds. We have

‖F ′[γ†](γ − γ†)‖Y ≤ ‖F ′[γ†](γ − γ†) + (F (γ†)− F (γ))‖Y + ‖F (γ)− F (γ†)‖Y

≤
∥∥∥∥F ′[γ†]( |γ − γ†|2γ

)∥∥∥∥
Y

+ ‖F (γ)− F (γ†)‖Y

≤
∥∥∥∥ 1

γ

∥∥∥∥
∞
‖F ′[γ†](|γ − γ†|2)‖Y + ‖F (γ)− F (γ†)‖Y

≤ 1

α
θη‖F ′[γ†](γ − γ†)‖Y + ‖F (γ)− F (γ†)‖Y .

Thus, (
1− θη

α

)
‖F ′[γ†](γ − γ†)‖Y ≤ ‖F (γ)− F (γ†)‖Y .
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Using (3.18), with γ and γ† swapped and the constant C = 2 + ξ†, we obtain the strong
tangential cone condition as follows:

‖F (γ)− F (γ†)− F ′[γ](γ† − γ)‖Y
≤ ‖F (γ)− F (γ†)− F ′[γ†](γ† − γ)‖Y + ‖F ′[γ†](γ† − γ)− F ′[γ](γ† − γ)‖Y

≤
∥∥∥∥F ′[γ†]( |γ − γ†|2γ

)∥∥∥∥
Y

+C

∥∥∥∥F ′[γ†]( |γ − γ†|2γ

)∥∥∥∥
Y

≤ (1 + C)

∥∥∥∥ 1

γ

∥∥∥∥
∞
‖F ′[γ†]|γ − γ†|2‖Y

≤ (3 + ξ†)
1

α
θη‖F ′[γ†]γ − γ†‖Y

≤ (3 + ξ†)
θη/α

1− θη/α
‖F (γ)− F (γ†)‖Y .

Tangential cone conditions by source conditions. An immediate corollary of the pre-
vious theorem is the result that the cone conditions are satisfied if a source condition (or a
conditional stability estimate) holds.

COROLLARY 4.2. Let W be a Hilbert space that is continuously embedded into L∞.
Assume that a source condition

γ − γ† = (F ′[γ†]∗F ′[γ†])µω

holds with µ > 1
2 , where F ′[γ†]∗ is the adjoint in W . Then, for ‖γ − γ†‖∞ sufficiently small,

the strong tangential cone condition holds for a given η ≤ 1
2 .

Proof. The left-hand side of (4.3) is bounded by

‖F ′[γ†](|γ − γ†|2)‖Y ≤ L‖γ − γ†‖2∞ ≤ L‖γ − γ†‖2W , L = ‖F ′[γ†]‖2,L(L∞,Y ).

The source condition implies a stability estimate (see, e.g., [6, p. 59])

‖γ − γ†‖W ≤ ‖ω‖1/(1+2µ)‖F ′[γ†](γ − γ†)‖2µ/(2µ+1)
Y .

Combining the inequalities yields

‖F ′[γ†](|γ − γ†|2)‖Y ≤ L‖ω‖2/(1+2µ)‖F ′[γ†](γ − γ†)‖4µ/(2µ+1)−1
Y ‖F ′[γ†](γ − γ†)‖Y

≤ L‖ω‖2/(1+2µ)(L‖γ − γ†‖∞)(2µ−1)/(2µ+1)‖F ′[γ†](γ − γ†)‖Y .

If µ > 1
2 then (4.3) is verified for

‖γ − γ†‖∞ ≤
(

θ∗
L‖ω‖2/(1+2µ)

)(2µ+1)/(2µ−1)

, ‖γ − γ†‖∞ < α.

Tangential cone conditions by finite-dimensionality. Because of (3.1), we may esti-
mate the left-hand side in (4.3) by

‖F ′[γ†](|γ − γ†|2)‖Y ≤ ‖γ − γ†‖∞‖F ′[γ†](|γ − γ†|)‖Y ,(4.4)
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such that a sufficient condition for (4.3) is that, for some constant C, we have that

(4.5) ‖F ′[γ†](|γ − γ†|)‖Y ≤ C‖F ′[γ†](γ − γ†)‖Y ,

and that additionally ‖γ − γ†‖∞ is sufficiently small.
An interesting observation is that the right-hand side in this inequality generates a

(semi-)norm:
PROPOSITION 4.3. Define

‖w‖∗ := ‖F ′[γ†](|w|)‖Y .

Then ‖w‖∗ defines a semi-norm in L∞.
Proof. Indeed, take z1, z2 ∈ L∞ arbitrary. Then, 0 ≤ |z1(x)+z2(x)| ≤ |z1(x)|+ |z2(x)|.

Thus, the triangle inequality for ‖w‖∗ follows from (3.1) with w1 = |z1 + z2| and w2 = |z1|+
|z2| and the triangle inequality for ‖ · ‖Y . The norm is positive definite since

‖F ′[γ†](|w|)‖2 =
∑
f∈I

∫
Ω

|w(x)||∇uγ†,f (x)|2 dx ≥ 0.

Consequently, condition (4.5) can be rephrased as an equivalence condition between two
(semi-)norms:

‖w‖∗ ≤ C‖F ′[γ†]w‖.

(Note that the reverse inequality is easy to obtain.) The well-known norm equivalence in
finite-dimensional spaces leads to the following result.

COROLLARY 4.4. Let γ, γ† ∈ D(F ) with γ − γ† being in a finite-dimensional space Xn,
and let F ′[γ†] be injective on Xn. Then there is a dimension-dependent constant Cn such that,
for all

‖γ − γ†‖∞ ≤ Cn,

the strong tangential cone condition is satisfied for some given η.
REMARK 4.5. We imposed the condition of injectivity of F ′[γ†] since it was not required

to have complete measurements, i.e., that (fi) forms a complete orthogonal basis. If this is
the case, then injectivity can be verified by the well-known uniqueness results for the EIT
problem.

Tangential cone conditions by monotonicity. In view of the condition (4.5), it is ob-
vious that it holds in the case that γ is below or above the true conductivity, since then
|γ − γ†| = ±(γ − γ†). Let us state this as a corollary.

COROLLARY 4.6. Let γ, γ† ∈ D(F ), with ‖(γ − γ†)/γ†‖L∞ ≤ 2. Assume that either

γ(x) ≤ γ†(x) or γ(x) ≥ γ†(x) ∀ x ∈ Ω a.e.

Then for

‖γ − γ†‖∞ ≤ θ∗,

with θ∗ as in Theorem 4.1, the strong tangential cone condition is satisfied with η as in (4.3)
and θη = θ∗.

In the following we generalize this monotonicity result by imposing “imbalancing condi-
tions,” i.e., that the negative part of γ − γ† is dominated by the positive part or vice versa.
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We denote the positive and negative parts of γ − γ† by

(γ − γ†)+(x) := max{γ(x)− γ†(x), 0} and

(γ − γ†)−(x) := −min{γ(x)− γ†(x), 0},

such that

γ − γ† = (γ − γ†)+ − (γ − γ†)−.

THEOREM 4.7. Assume that there exists a constant C or a constant ν < 1 such that

(4.6) ‖F ′[γ†](γ − γ)+(x)‖Y ≤ C‖F ′[γ†](γ − γ)‖Y

or

(4.7) ‖F ′[γ†](γ − γ†)+‖Y ≤ ν‖F ′[γ†](γ − γ)−‖Y

(or the respective inequalities with ( )+ and ( )− swapped) hold.
In the case (4.6), if

‖γ − γ†‖∞ ≤ θ∗
1

(2C + 1)

holds, and in the case (4.7), if

‖γ − γ†‖∞ ≤
θ∗
3

(1− ν)

holds, with θ∗ from Theorem 4.1, then (4.3) is satisfied. In particular, under one of these
conditions, the tangential cone condition holds with any given η if additionally ‖γ − γ†‖ is
sufficiently small.

Proof. Set p(x) = (γ − γ†)+(x) and n(x) = (γ − γ†)−(x). Then γ − γ† = p− n and
(γ − γ†)2 = p2 + n2. We have

‖F ′[γ†](|γ − γ†|)‖Y
≤ ‖F ′[γ†](p+ n)‖Y ≤ ‖F ′[γ†]p‖Y + ‖F ′[γ†]n‖Y
≤ ‖F ′[γ†]p‖Y + ‖F ′[γ†](n− p)‖Y + ‖F ′[γ†]p‖Y
≤ 2C‖F ′[γ†](p− n)‖Y + ‖F ′[γ†](n− p)‖Y
≤ (2C + 1)‖F ′[γ†](γ − γ†)‖Y .

Thus,

‖F ′[γ†]((γ − γ†)2)‖Y ≤ ‖γ − γ†‖∞(2C + 1)‖F ′[γ†](γ − γ†)‖Y ,

and (4.3) holds. In the case of (4.7), we estimate

‖F ′[γ†](γ − γ†)‖Y = ‖F ′[γ†]p− F ′[γ†]n‖Y ≥
∣∣ ‖F ′[γ†]p‖Y − ‖F ′[γ†]n‖Y ∣∣

≥ (1− ν)‖F ′[γ†]p‖Y .

Hence (4.6) is verified with C = 1/(1− ν). The result then follows from the first part with
ν ≥ 0.
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Finally, as the most constructive result, we establish the local tangential cone conditions
for general C2-conductivities with “imbalanced” positive or negative part.

THEOREM 4.8. Assume that ‖γ − γ†‖C2(Ω) ≤ C1 and ‖(γ − γ†)‖∞ ≤ C2 < θ∗/3, with
θ∗ from Theorem 4.1. There is a nonnegative nondecreasing function ψ such that, if

‖(γ − γ†)−‖∞ ≤ ψ(‖(γ − γ†)‖∞)(4.8)

holds (or with the roles of + and − swapped), then the strong tangential cone condition is
satisfied with some η < 1.

Proof. Without loss of generality we assume that ‖(γ − γ†)+‖∞ > ‖(γ − γ†)− ‖∞ and
hence that ‖(γ − γ†)‖∞ = ‖(γ − γ†)+‖∞. The case in which the negative and positive parts
have equal norm is ruled out by the assumptions of the theorem. Let x0 be a point in Ω where
the maximum m of δγ := (γ − γ†)+ is attained. Then δγ′(x0) = 0, and with the C2-bound
we may find an estimate

(γ − γ†)+(x) ≥ m− C1

2
‖x− x0‖2.

Thus, for ‖x−x0‖2 ≤ m/C1, we have that (γ−γ†)+(x) ≥ m/2. By the monotonicity result
in (3.1), it follows that

‖F ′[γ†](γ − γ)+(x)‖Y ≥
‖(γ − γ†)+‖∞

2
‖F ′[γ†]χBm/C1

(x0)‖Y ,

where Br(x0) is the ball with center x0 and radius r, and χ denotes the characteristic function.
Define

κ(m) := inf
Bm(x0)⊂Ω

‖F ′[γ†]χBm(x0)‖.

This defines a nonnegative and nondecreasing function. Thus,

‖F ′[γ†](γ − γ)+(x)‖Y ≥
m

2
κ

(
m

C1

)
.

Define ν := 1− 3C2/θ∗. By the assumption in the theorem, 0 < ν < 1. We let

ψ(m) :=
1

2L
mκ

(
m

C1

)
ν.

If (4.8) is satisfied with this ψ, then with m = ‖(γ − γ†)+‖∞ we have

‖F ′[γ†](γ − γ)−(x)‖Y ≤ L‖(γ − γ)−‖∞ ≤ ψ(‖(γ − γ)+‖∞)

≤ νm
2
κ

(
m

C1

)
≤ ν‖F ′[γ†](γ − γ)+(x)‖Y .

Thus, (4.7) holds, and since

θη
3

(1− ν) = C2 ≥ ‖(γ − γ)‖∞,

the result follows from Theorem 4.7 .
The relevance of this result is that we have the tangential cone condition satisfied in

an L∞-ball if the positive (respectively negative) part of the difference of conductivities
dominates the negative (respectively positive) part.
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A convexity result. We finally use the methodology to state a condition when the least-
squares functional for impedance tomography is convex in certain directions. The result is as
follows.

THEOREM 4.9. The least-squares functional for the EIT problem

J(γ) := 1
2‖F (γ)− F (γ†)‖2F

is convex on the convex set

C = {γ ∈ D(F ) | Λ′γ†(γ − γ
†) ≤L 0}.

Proof. First, we note that D(F ) is a convex set and the set C can be written as the
intersection of half-spaces with D(F ), thus being a convex set:

C =
⋂
i∈I

{
γ :

∫
Ω

γ(x)|∇uγ†,fi(x)|2 dx ≤
∫

Ω

γ†(x)|∇uγ†,fi(x)|2 dx

}
∩D(F ).

For γ1, γ2 ∈ C, consider γt := tγ1 + (1 − t)γ2, t ∈ (0, 1), set ∆γ = γ1 − γ2, and let
h(t) := J(γ(t)). Differentiating twice yields

h′′(t) = (F ′′[γt](∆γ,∆γ), F (γt)− F (γ†)) + ‖F ′[γt](∆γ)‖2.

Here F ′′ is negative definite by (3.17), and by using the upper bound in (3.15), we have that

h′′(t) ≥ ‖F ′[γt](∆γ)‖2 + (F ′′[γt](∆γ,∆γ), F ′[γ†](∆γ)) ≥ ‖F ′[γt](∆γ)‖2 ≥ 0,

since the inner product of two negative definite operators is positive. Thus h is convex, which
proves the result.

5. Discussion. We have stated various sufficient conditions for the tangential cone con-
ditions for the EIT problem. Probably the practically most useful results are those using
monotonicity, e.g., Theorems 4.7 and 4.8.

These results might explain to some extent the convergence behavior of the Landweber
iteration for the EIT problem. The fact is that the cone conditions are only required for the
iterates γk and the true conductivity γ†. In many numerical experiments, the initial value
for the iteration is often chosen to be strictly below the true conductivity; for instance, if
γ† corresponds to inclusions that have higher conductivities than the background, and thus,
naturally, the initial values of the iteration are taken as that background. Then by Theorem 4.7
(respectively, Corollary 4.6), the cone condition is satisfied for the initial iterate, and the
iteration will at least remain bounded. This will also be true for a certain number of the
following iterations. In the opinion of the author, this is the most plausible explanation for
the observed convergence of Landweber iteration for this problem. Note that for the Robin
transmission problem, similar monotonicity results were use in [8] to prove global convergence
of a Newton method.

However, for the EIT problem, it is not guaranteed that the assumed monotonicity between
γk and γ† will hold for all iterations. In a lucky case, it will hold up to a stopping index, and
then the iteration appears to be convergent. However, in an unlucky case, the cone condition
might be violated, with the effect that the iterates can diverge even though the stopping criterion
is not yet met. This effect may mistakenly be regarded as semiconvergence, i.e., divergence by
data error, although this has nothing to do with noisy data.

For a fair investigation of the convergence of the Landweber method, it would be inter-
esting to start with a γ that has values below and above γ† in a high number of regions, e.g.,
γ0 = γ†+ highly oscillatory. An interesting question is whether the iterates of the Landweber
method would still remain bounded in this case.
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