Electronic Transactions on Numerical Analysis. ETNA

Volum-e 59, pp. 179-201, 2023. . . Kent State University and
Copyright © 2023, Kent State University. Johann Radon Institute (RICAM)
ISSN 1068-9613.

DOI: 10.1553/etna_vol59s179

ON THE NUMERICAL SOLUTION OF AN ELLIPTIC PROBLEM WITH
NONLOCAL BOUNDARY CONDITIONS*

ZORICA MILOVANOVIC JEKNICT, BRATISLAV SREDOJEVICE, AND DEJAN BOJOVICS

Abstract. In this paper we consider a class of non-standard elliptic transmission problems in disjoint domains. As
a model example, we consider an area consisting of two non-adjacent rectangles. In each subarea, a boundary-value
problem of elliptic type is considered, where the interaction between their solutions is described by nonlocal integral
conjugation conditions. An a priori estimate for its weak solution in an appropriate Sobolev-like space is proved. A
finite difference scheme approximating this problem is proposed and analyzed. An estimate of the convergence rate,
compatible with the smoothness of the input data, up to a slowly increasing logarithmic factor of the mesh size, is
obtained.
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1. Introduction. Itis well-known that transfer of energy or mass is fundamental for many
biological, chemical, environmental, and industrial processes. The basic transport mechanisms
of such processes are diffusion and bulk flow. Therefore, the corresponding flux has two
components: a diffusive one and a convective one. Here we pay attention to diffusion in a
two-dimensional domain with layers. Layers with material properties which significantly
differ from those of the surrounding medium appear in a variety of applications. Layers can
be structural, thermal, electromagnetic, optical, etc. Mathematical models of energy and mass
transfer in domains with layers lead to so called transmission problems. We use a method
proposed in [8] of modelling a thin layer as an interface. The interaction between solutions in
subdomains is described by means of nonlocal integral conjugation conditions. In order to
explain the method proposed in this paper for the mathematical modelling of layer phenomena,
we consider a physical model.

Let us consider a simple physical model of a system 2 = Q! U Q2, where Q! and Q? are
two disjoint, Lipschitz domains in R, N > 2, surrounded by a transparent medium Q°. They
represent conductive and opaque bodies with different material properties. We assume that all
material are grey; see [5, 22]. Therefore, radiation only needs to be considered at the surfaces
of the bodies 2! and 2.

For £,m € RY we define [£, 7] to be the line connecting the points ¢ and 7, i.e.,

[€,n] = {a€+ (1 —a)n|a € [0,1]}.
We also define, for k = 1, 2,
PR = (e e |Ine Q3% [¢,n]nQF =0},

and split 9QF \ T*® into two parts: T¥P and T*"V. In such a way we have 9QF = I'*F
I'»P yT*N k= 1,2. Nonstationary radiative heat transfer in the system of two disjoint
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bodies Q' and 2 (see Figure 1.1) can be described by the following equations [2]:

N
(1.1) aa—u: ;:1 82 ( D (6t u )g;) = fReEt), €eQf t>0,
(12) uP(€,0) = ug(§), €€,
(1.3) uF(€,t) = (&), €eTHP t>0,
Z AR (&t %{k cos(6;) + i (u*(¢,1)) =
(14)  ji=1 !
am%h%uﬁ*< )w(n, & 1) do(n) + gr(6,1), £eTHFuUrhN ¢>0,

where 6, is the angle between the unit outward normal vector v(£) to 9 at the point £, do is
the Lebesgue measure on 99, u* (&, t) is the temperature of the body QF, A% (¢, ¢, u*) is the

heat conductivity tensor, hy (u*(£,t)) is the surface radiation flux density,

/ags—k ha—k (W~ " (0, t))w(n, &, t) do ()

is the radiation flux density absorbed at the point £, and & = 1, 2. If the bodies are at rest, then
the kernel w (the so called view factor) is independent of ¢ and has the form

(v(n),§=n)(v(&),n=&) _
g - { SHGE0 enna =0,
0, [, m N #0,

where by = meas(Sy_1)/(N — 1), Sy_; is the N — 1-dimensional unit sphere in RY,
(€,n) is the standard Euclidean inner product in RY, and [¢| = (£, &)/? is the Euclidean
norm. In the case of radiation of Stefan—Boltzmann type, the flux density term has the form
hi(uF) = ag|uk[Pu®.

(1.5)

FIG. 1.1. System of two bodies Q' and Q2.

Numerical methods for solving transmission problems of elliptic type were studied in
many papers; see [10, 16, 7, 20, 24]. In particular, a one-dimensional elliptic problem in two


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

ELLIPTIC PROBLEM WITH NONLOCAL BOUNDARY CONDITIONS 181

disjoint interval was studied in [16, 7, 24]. As in [16], using the finite element method, a
two-dimensional elliptic problem with Dirichlet boundary conditions was discussed in the
paper [10]. The paper [20] marks the beginning of research on the transmission problem with
Robin’s boundary conditions.

The novel contribution of this paper is that the so called third boundary value problem (or
Robin type boundary value problem) for elliptic type equations is considered. The existence
and uniqueness of the weak solution will be analyzed in two cases, depending on whether the
bilinear form is coercive or not. The problem is approximated by the finite difference method.
In both cases, an estimate of the convergence rate is obtained.

2. Formulation of the problem. We begin by defining the domains Q' and Q2 in the
following way: Q' = (a1,b1) x (¢,d), Q% = (az2,b2) x (c,d), with —co < a1 < by < ag <
by < +o0and ¢ < d. We denote by I'* = 9% = U7 ;,_ T'}; the boundaries of the considered
subareas, where

Il ={z=(z1,22) €T} |z1 =1}, Tiy={zel |z =0},
F%l = {.Z': (Z‘l,xz) € F2‘LE1 :G/Q} F§2 = {x & F2|x1 :b2}7
I5 = {zel* |z =c}, M5y ={zecl* |z, =d}, k=1,2

As a model example,we consider the following boundary-value problem: find functions
ul (21, 12) and u? (1, 22) that satisfy the system of elliptic equations

(2.1) LruF(z) = f¥(@1,20), o= (21,22) € QF,
k() 3=k k
kokoon Jri(@)urT (), reliy ,,
2.2 Fut(z) = {0, reDF\TE, .
where
2.9 duk
3 L) == Y o (M@ G @) ) + ),
=1 """ J
2 ou®
24) Pub(a) = 3 ply(a) 2 () cos(8)) + 0 () ),
ij=1 J
(2.5) (r*u® %) (z) == o B (w9, xh)ud~F (x1, %) dah,

and % is the angle between the unit outward normal vector v* to T'* (k = 1, 2); see Figure 2.1.

Notice that the boundary condition (2.2) on I'* \ Fk _, reduces to a homogeneous Robin
boundary condition, while on T'¥ 3 itcan be con51dered as a conjugation condition of non-
local Robin—Dirichlet type. The boundary value problem (2.1)—(2.5) reduces to a linearized
stationary radiative heat transfer problem of the type (1.1)—(1.4) if we choose 3; in accordance
with (1.5):
ag—i(z))(az — b1)?

ﬁi(l‘g,l‘lg) = 2[((12 — b1)2 + (332 — x/2)2]3/2’

i=1,2.
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Fln Q°

r, r, T I

1 2
l—‘21 Fz]

FIG. 2.1. The rectangles Q' and Q2.

We assume that the following standard conditions of regularity and ellipticity are satisfied:

pfj :P?i € L>(QY), ¢ € L=(0F),

(2.6) _
o e L), B e LI, x T,
2 2 2
2.7 Y <Y phtg <> & VzeQf, VEeR?,
i=1 i,j=1 i=1

where we denote by C, ¢;, and c¥, positive constants, independent of the solution of the
boundary-value problem and the mesh sizes. In particular, C may take different values in
different formulas.

3. Existence and uniqueness of weak solutions. We introduce the product space
L=L*QY x L3(Q%) = {v = (v',v?) | o" € L2(QM)},
endowed with the inner product and associated norm
(uv)1 = (u!, 0" ooy + (U2, 0%) 202y, 0]l L2ger) = (0,0) gy,
where
(Uk,'l)k)LQ(Qk) = //m uFoP dedy, k=1,2.
We also define the spaces
H® = {v= ("0} o" € H(QY)}, s=1,2,..,

endowed with the inner product and associated norm

(uv) e = (u, 0" e gan) + (W2, 0) o2y, il r) = (0,0) oy,
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where H*®(QF) are the standard Sobolev spaces [1]. Finally, setting u = (u!,u?) and

v = (v!,v?), we define the bilinear form

22 : - k du” ov* k, k,k
= (L L2 = i dzid
a(u,v) ( U, v) 2 2 /‘/)C 2 1;0” z; - +q u"v 1 Ax2

1

+/ aFuFok dI‘k—/
Fk, Fk

1,3—k

LEMMA 3.1. Under conditions (2.6) the bilinear form a defined by (3.1) is bounded
on H' x H'. If in addition conditions (2.7) are fulfilled, then this form satisfies Gdrding’s
inequality on H', i.e., there exist positive constants m and k such that

(3.1)
Brud—kyk Ar3—+ dl“’“) .

3—k
Fl,k

a(u,u) + /<;||u||% > m||u\|%p, Vue H'.

If B* are sufficiently small and o > 0 (k = 1,2), then the bilinear form A is coercive, i.e.,
k = 0. A sufficient condition for this to hold is that

2/ al(z)a?(z)

(2) [ () + B )| < T

VreTll,, Vo' eTli.
Proof. The proof is analogous to that of Lemma 3.8 in [14]. Boundedness of A follows
from (2.6) and the trace theorem for Sobolev spaces:

Huk||L2(8Qk) < CHukHHl(Qk)~

Garding’s inequality is then a consequence of (2.7), (3.1), the following multiplicative trace
inequality (see Prop. 1.6.3 in [4])

k k !
w122 008 < Cllubll L2 @0 w5 @n),

and the Cauchy—Schwarz and e-inequalities, for a sufficiently small € > 0. a

THEOREM 3.2. Let o > 0, ¢* > ¢, > 0, f € L?(Q), and let the assumptions (2.6), (2.7),
and (3.2) hold. Then, the boundary-value problem (2.1)—(2.5) has a unique weak solution
u € HY(), and it depends continuously on f.

Proof. The proof is an easy consequence of Lemma 3.1 and the Lax—Milgram Lemma;
see Theorems 17.9 and 17.10 in [25]. O

4. Finite difference approximation. Let ny, n3 € N, ng,ng > 2 and h = (b, —
ax)/ni = (d — ¢)/ns, for k = 1,2. We consider the uniform meshes w* with mesh size £ on
%, We also define the following meshes, for i, j, k = 1, 2:

vF =af Nk, i =a"Nry, A ={r el c<z <d},

o —k k ~k kx _ =k \ Ak
T; ={z e c<ap <d}, 'ylf:{xevlj se<ze <dy, M =5\ N
'y§j ={z e '7§j Dap < xp < bit, 75{ ={z e ”ygj sap < a1 < byt

v ={z ey an <z <be}, s =35\, W =7"\{ui}-

We shall consider vector-functions of the form v = (v!, v?), where v* is a mesh function

defined on @W*, k = 1,2.
The relevant finite difference operators are defined in the usual manner [6, 17, 23]

(VF) i — P i ok — (vF)~i
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where (v¥)*(z) = v*(x £ he;) and e; is the unit vector of the axis z;, i,k = 1, 2.
We define the following discrete inner product on the space L?

2 2
[oF, whe = b2 > ok (@)wh () + % > F@wb@) + hz > k@)t (@),

rEWP zeEYF\~F TEYE

and the inner products for the forward and backward differences on the vector space of all
real-valued functions defined on @' and @?. We give analogous definitions for the vector
spaces of mesh functions on which the inner products and norms introduced below are defined

h2
s = b2 Y @ Y @),
zEWFUYE ze"/g’:iJUV;‘:zﬁﬂ
h2
(", M)y = h? Z o (2)w ()+? Z v*(z)wk (),
zEWFUE, IE’Y;I;:JU’Y;,;CLQ

[k, wh)y, = h? Z o (x)wk (z),

k— | k—
€Wk U Uvsy

(v*, wk), = h? Z oF () wk (z),

zewkU~yFFUyEF

with appropriate norms defined by
MR =080, I0PIR = 0 0 e, I0MIR S = (0, 0",
7 = oM, IFR = (v’“,v’“}k-
The discrete Sobolev norm is defined by
0" @y = 10°1IR + Ilvg, 1R 2+ 1[vg, IR -
We define the discrete analog of the norm on the space C of continuous functions by

0Mle@r) = max [v" ().

The discrete L? inner products and norms for functions defined on the boundary are

h
o wfl =0 3 F@et@) + 5 Y Hawt@),  (hE = et
mE'y” a:E'yfj*
k(|12 _ [k Kk
oty =h 3, o), 812 = 0¥, o)
me’yij

Let us also introduce the fractional-order discrete Sobolev seminorm and norm by

vk (x) — P (') 2
PTRRRTI S a1

T3—j — Lq_ .
a:z’e'ykf,z’;ﬁm 3 3—i
H”k”ip/z(,ﬁ[) |U H1/2( +|[ kHQk s
1
k2 _ 1.,k12 k 2
0Bty = 1 .-)+h > (it e PR

a:G’y”
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where l;,; = d — cand [ = by, — ay.

For v = (v!,v?) and w = (w!, w?) we define

w] =Pt wli+% s, RIP =[], Wl = 10" @) ) @)

For f* € L'((ay,br);C([c, d])) we also define the Steklov smoothing operators (see [9])

k k h 1 B1th/2 k(.1 !
T f (x):TziFlf (331157952):%/ JH(xy, 22) da,
x1—h/2
k F rk h 1 m2th/2 k(.. !
T f"(z) = Tih f (931,$2i§)=ﬁ/ [H (2], w2) day,
xg—h/Q
x1+h /
) r1— T
st = [ = ) ) a,
xr1—

b /

_ ! by —

T £ (by, wa) = /b . (1— ! 3 1)f1<.’17/1,l‘2)dx/17
!

2+ 2 axth Ly — a2y o, ’
Ioi f(az,22) = (1- n ) 2 (@], x2) dat,
az

1
h
2
h
2
h

with £ = 1,2, and similarly for the other mesh functions. These operators commute and
transform derivatives into differences. For example,

8Uk k o auk & 5 a2uk .
T (8%) — Yoo T (3331 = Yz i oz2 ) T Umiei

In the sequel, we shall assume that the weak solution of the problem (2.1)—(2.5) belongs
to the Sobolev space H?, 2 < s < 3, while the data satisfy the smoothness conditions

@ pl e HHQY),  oF e HPTUR(TY), ofec(Th),  pre HTH(AR),

fFe TR, ¢F e HTRQY), kyi,j=1,2.
We denote
T,flTszf’“, x € Wk, T,flT,quk, T € wk,
il 2+ ~k 2+
" =9 T TI?,B—ifk7 revh/reny 4 =Tk Tl?,:s—iqka x €Y /T €,
2+ 2+ ek 2+ 2+
T T 15, x €%, TETs ds x €y,
~k k k k -
o= Tk2‘,3—ia ’ T e Vi1 U Yi2» L= 1) 27
~k 2k k .
Q; :Tk73_ia , T e, 1=1,2,
and

2k k
gk = T 87, T EV 3 ks
= 2+ ok k
Tys B, T E V5 g
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We approximate the bilinear form (3.1) by the following discrete bilinear form:

“4.2)
ap(u,v) = [Lpu, v]
k=1

i=

k k k
+1Pi 3 itz

P

)

a1+a2uv

zEVk €YY 5y ! e%,k
h? _
B S, S Bt @k
As (Lu,v)r, = a(u,v) ~ ap(u,v) = [Lpu,v], by performing a partial summation in
formula (4.2), we conclude that the boundary value problem (2.1)—(2.5) can be approximated
in the form
4.3) Liv = f*, z ek, k=1,2,
where Lj v is defined as
2
_%Z[p” vs,) s, + (Phv1,), }—f—q T € wl,
g +1 g T3
B - el St 4 att] - (phaet)
—(p%w;l)iz - %(pQQUgl;Q)fz - *(p%ﬂ%z)m + gt T €y,
r 1 1 +1
% _ 1’11+(§11) ,Ui, p12v:1:2 +a1 1
; +2
+2 |: _pélvil - P22+(P22) vwg + a{2’01:| + qlvl, T = (a’17 C),
[ +
% pll (pll) U p121) =+ Oél’U :| - 2(p%211%2)m
+ﬁ [levxl + %%2 +agv ] = 2(phvg,),, +@'0' oz =(a1,d),
r,1 1 \—1 1 1
% P11+(p11) ’Ul. +p%2 vIervzz +5&1’U1
Loo ] @0k ] - (puv;z)@
1 1 ~
(P21Ux1)3,2 - 5(1722 }/’2)12 - 5(?%2”%2);52 +q'ot, T € Vi,
r + —1 ~
% M +p121’)ﬂ/2 + O[11}1 [ﬁl(xa )71}2(' ]’?%1:|
+E |: 7p21,0a71 _ P22+(§22) 12 + Oél 1:|
—2(10%2”;2)— - 2(1”%1”%1) +q'o! z = (b, ¢),
r..1 + 1 ~
2[Eeth) 0l 4 phot, +ade! — (B (e ), 2 (),
+h[phot, + I o, 0+ g, # = (by,d),
o[ pht(l)*? ol bl
2 Py (sz) vl, — phy st +alv1} - (p%ﬂg%l)m
L ) B
*(pmvm)il - 5(?%1”%1)55 - 5(]9%1”%1)301 +q'o! T € Y3y,
oot ply) ol
% Pao (522) 0%2 +p%1 12 1 +Ot1’Ul:| _ (pélvﬂlm)jz
) 1 1 ~
*(P%zvglm)ml 5(17%1’021:1)5”1 - 5(17%1”%1)11 +q'o! T € Vo,

=S {53 [t
,i]}—l-[qu " k+z Zha uFoP

,UI:;L)]C + (pf:?) Zuwg i

08 Vi + (Dhuk 0% Tk

1

bLj=lzeyk

hZZ ZﬂkIISk()k()
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and L?v is defined analogously. The finite difference scheme (FDS) (4.3) may be compactly
presented as the operator-difference scheme

(4.4) Lyv = f,

where v = (v1,v?), f = (f', f2), and Lyv = (L}v, L3v).
The following analogue of Lemma 3.1 holds.

LEMMA 4.1. Under conditions (4.1), the bilinear form ay, defined by (4.2) is bounded
on H} x H}. If in addition conditions (2.7) are fulfilled, then this form satisfies a discrete
Gdrding’s inequality on H}, i.e., there exist positive constants m and & such that

ah(v,v)+/?;||v||2 2thv||fq}1L, VoeH .

LEMMA 4.2. Let pfj, aF > 0 and * satisfy assumptions (4.1), let ¢* satisfy assump-
tion (2.7), and let conditions (3.2) be fulfilled. Then, for a sufficiently small mesh step h, there
exist positive constants ce and cs such that

02|[v]|§{}1l < ap(v,v) = [Lpv,v] < C3|[U]|§Ii'
The proof is analogous to that of Lemma 3.1.

5. Error analysis and convergence rate estimate. Let u = (u',u?) be the solution of
the boundary-value problem (BVP) (2.1)—(2.5), and let v = (v, v?) denote the solution of the
FDS (4.4). The error z = (2!, 2?) = u — v satisfies the following conditions

(5.1) Lz =oF, zea”,
where
2
Z 772'1]'@1- —l—,ul, T € Wla
ig=1
20l + Enig + 31 29 + To2.2, + %Cl + it ) T €N,
F(hy + e + G+ )+ 7 (3 + 732+ G) + AL = (a1, 0),
_%(77%1)71 - %(77%2)71 + 77%1,52 + 7752,:7;2 + %Cl + %Xl + i,z e,
V= 2 ()T = )T G ] (T s+ ) A @ = (b, o),
031+ 23 + M1z, + Mo, + 3¢+ A i T € Yy,
w it il + G+ ()7 = (1) 7+ G) + A = (a1, d),
% [*(7751)71 — (n39) 7" JFCl] +7~7%1,21 +ﬁ%2,i‘1 + it T € Y39,
F-) ™ = () + ¢+
+ 2 [=3) 7 = () + G+ A z = (by,d).

The mesh function 12 is defined similarly. Furthermore,

2

it =1 (i 5 ) - B
i 7 ,3—1 (41 (93;‘1‘ 2 x;

ouk 1 ) )

k k k k k k

Nij = Tngg,s.—i (Pijam) -3 [pijumj + (Pij)ﬂ(ucz_,»)ﬂ] ) T ew,
J

fe— k—
TEV3 1/ E V30

T2+ k At ok k €~k
kitk,3—i\ Pi,3—i Di3—illgy ;s L& Y3-4,1»

~k o 83:3;
Tig—i = 2 k l ko oNdi ko \+i k

_ i i _
TkiTk,S—i (pi,s—i ) - (pi,3—i) (Uig,i) y T E Y350,

ouF

O0x3_;
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with
¢F = (T Wk — T (oFu®), T € 7§—z‘,1 U’Y§—¢,27
¢ = (T )b — TEF (aF ), z €y,
and
(Tszk 3-id ) - TlgiTkz,S—i(qkuk)7 z € wh,
ﬂ (T35 Tod W = T35 Th(d"aY), v e fo evi,,,

= (T ZTH Ot - T T (M), weny

Xk:/m,kTzfzﬂk(wvx’)u?’—k(x’)dr?;’“—h > T8 a ) M)

1k T egﬁBkk
h _
Y Z TkQQﬁk(:C’x/)UB k(x/)vxef}/f,ia—k’
3—k
””E'Ylk
k + ok k + sk k
X:/ng,fQB(ﬂcx) Fa)drfE —n Y T (2t H ()
Flk ~3—k
T €7y
R N 1 OV NP
xe’_yfkk

We shall prove a suitable a priori estimate for the FDS (5.1). For this purpose, we need some
auxiliary results.

LEMMA 5.1 ([13]). The following inequality holds true:
[0 0k, )| < ClO e [0 0 .

T3—i

LEMMA 5.2 ([13]). Let v* be a mesh function on @*. Then,

0" e @) < Cy/log — H e @

Proof. We represent the function v*(z1, 22) in the form

7L3 nk ns
Py lmxs "k Imxs
2y, 20) E E apl cos cos = E C (xl)cosd ,
—-a —c —c
1=0 p=0 b — a 1=0
where
n—1

S b =bo/24+ > b+ ba /2.
=0

=1

It follows immediately that
”n,g/ ngl 1/2 ng/ 1 1/2
k k k 2
v (1, x0)| < Ci(xy)] < VA 4+ 1(CF (x _— ,
| ( 1 2)| ; ‘ l ( 1)| (;) l ( l ( 1)) > (;} m)

2
where \; = (i sin (ld hc)) )
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Further /A, +1> /A = %sin 2&”‘ = d7 (1=0,1,...,n3), from which

/ 1 s 1 1
< 7:]_4, [
ns 1
<1l+ <

and

n3
Let us now estimate the sum S; = 5" /A, + 1(CF(z1))?%. Using the inequality [3]
=0

nkfl
max |C* (@) <aih Y (CF,, (ar +mh))?

m=0

1 1 S )
+ (El + 5 _ak) hY " (CF(ax +mh))?,

m=0

where C*(z1) is a function defined on the mesh for 1 € {ay,ax + h,...,axr + hn;} and
e > 0, we obtain

ns ni—1
Z/ /N + 1 Cl x1)) < Z VAL A+ {61]1 Z Cl 1 (ag + mh))
=0

ng

(st

m=0

We shall choose ¢; from the condition % + ﬁ = (A + 1)&;. A quadratic equation with

1+ 1+4()\L+1)(bkfak)2

two solutions is obtained, from which we choose the positive one £; = SO0 T) (br—ar)

This leads to

n3/1+\/1+4()\l+1)(bk—ak el
S < h C h
- ;) 2V + 1(bg, — ag) Z e a5+ mh))*

m=0

+ N+ 1)h Z'(cﬁ(ak + mh))Q}.

m=0

. V1A 1) (b
Note that the quotient Y. At D(be—a1)* o creases when [ increases, so that
2V +1(bg—ay)

L4+ /144N + 1) (b, — ag)? S+ V1+4(No + 1) (b, — ag)?
2V A+ 1(by, — ax) - 2v/ o + 1(by — ax)

14 /1 +4(bg —ar)?
2(by, — ax) '
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We therefore deduce that

IN

Z, VA 1(CF (21))? Lt v+ Al )_ ak)ZZ/{hk kz_ (Clk,zl(ak +mh))?
1=0 1=0 m=0

2(bk — ag
nk

+ (N +1)h Z'(Cﬁ(ak + mh))2}
m=0
_ 1 T+ A(bk — ag)?

(bx —ax)(d —c)

1+ \/1+4(bk 7&]6)2

a1 ey
k Qg C

(1R, 13 + 110, 113 + 1v*1%)

The required result follows from the obtained inequalities. a
Let us rearrange the terms in the truncation error ¢ in the form

A A e e A o T

where

_ h 0 ouk )
UﬁzigTE(azg 4(?1‘1‘6%))» 556'7:];—1‘,1/1‘6%”371’,2’
h 0 uk h A2uk
_k + k + [k
ko gl e 22 Sk, 2
771,3—1 3 ki <8$3_i <p1,3—1 axg_i >) 2 ki <pz,3—z a$§l>
h 0 ouk
§le (8301 (pﬁ?’_i&‘xgi))’ HAES ’Y:]’f—i,l/x € ’Yzl’f—i,m
h ouk
ph = ig (Tlizg—iTlgiqk) (T31$)7 HAES Wéti,l/x € 7:’321',2»
—i

h Auk h ouk
k 242+ k 24 24 2+ k 2+ k
prt = ig(Tm’ Ty 544 )(Tk,B—i 5”) + g(Tk,3—iTkz’ q )(Tki 8333_»)’ T E Yy

THEOREM 5.3. The finite difference scheme (5.1) is stable, in the sense that the following
a priori estimate holds

2

(<]l scz{ S (1l + lict
k=1

ij=1

k
S+ Rl )
2

(5.2) + |1k + |[Xk]|afgf,€ +h Y |[ﬁzl'€j||H1/2(»y§:i)l)
i =1

%]
2
hyflog Y (Zcﬂmm**ﬂ)}.

zeylk Ni=1
Proof. Multiplying equation (5.1) by z and summing over the mesh, one obtains

[Lz, 2]k = [WF, 2]
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Let us set k = 1. Then,

IS S (n31+n32)z;

i=1 wewlLJ’yllUVle

h? &
) Z Z (7731 + 77%2) 2,

i=1 xe'yel,:i,lu'yé:i,z

h? &
DD <031+77¢12>Zi

_ 1— 1_
i=1 xE’YS—i,IU’YS i,2

+hQZMZ+* Z M11+*ZM«Z

TEW! zefyl\'y zey}

+%2 Z M*121+4ZMH1 1+h Z Cll

zeyt\} €} €71, U7,

h h
+h Z C121+§ Z (12t Ty Z G2+ [Xlazl]'_yb

TE€Y U3z zET} zey}
The following estimates hold:
2 2 2
S SNED DI (ERTA FILS SR DI (e B

= 1 1 1= 1— 1—
=1 zewlun, Uy =l weys T, 101

2

Z 77m||1 Z‘ |H1(wl)’
h? Z ptzt + — Z p'z 4 Z w2t <[kl @),
rEW! zEyI\~} z€ry}

and

h
1 1 _ 1.1 1.1
' 25, =h > X'z +§§ X'z
7%2 7112*

<z g Gpe) g

<f (hZ (x1>2)1/2 +(3 > (x1)2)1/2}
X {(h; (z1)2)1/2 n (Z ; (21)2)1/2}
cafigwr-srer) pEerdrer]

<CIX g, [ @)
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Applying Lemma 5.2 we obtain

h? ~ -
_?Z Z (771‘11 +77i12> 2. < Chliyy, ml)% y

1— 1—
TE€Y3_;1YY3- 5,2

< Ch|[77ilj||H1/2(73{:“)|[21HH1(@1)'

Furthermore, by applying Lemma 5.1,

* h2 *k
Py e S et < a0 [ o
z€v\i TE€s
1
+Ontlog - 3 I o,

€Y}
and
D S D D B R DL
mGVhUV%Z xe'Y%lu'Yzlz Te’Yi 167}
< ACICH g, [ ]\Hl(w1)+0 \/log > Z\QH e @
a:E’y*
+C 5 \/los 7 Z\QH (@1

IE’Y*

The proof is similar for k = 2. a

THEOREM 5.4. Let the assumptions of Lemma 4.2 hold. Then the solution of the FDS (4.3)
converges to the solution of BVP (2.1)—(2.5), and the following convergence rate estimates
hold

ol <Ch* o (14 mawe s ey + e 35
(5.3) " h
wooi e

+max||a Il 7= s/z(pk)+max||5 | £ “L(k XT3,

2Jsk

for2.5 < s <3, and

3/2

1

= olly <00 (tog ) (1 mae o s + e[ o
5.4 b

a0 sz + max [ gacrs | ersor ) Nl

1,3—k

when s = 3.
Proof. The terms 7}; and * at the internal nodes of the mesh @* can be estimated in the
same manner as in the case of the Dirichlet BVP [9, 14]

2 s—
h? Z (775) < Ch? 2||p?j||%15*1(9’€)HukH%S(Qk)a 2<s<3.

U~k
zewkUyE
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An analogous result at the boundary nodes is obtained in [11]

2 s—
h? Z (mkg) < Ch? 2||p§j||§is—1(ﬂk)||uk||§—15(ﬂ’€)7 2.5<s<3.

2€Y37, 1V 40
From these inequalities it follows that
|[nz]‘€j||k,i < Ch‘s_lnpfjHHS*l(Q"')||uk||H3(Qk')a 2.5 <s<3,
and
(1"

Now it is necessary to estimate the term [|**||. » . It is sufficient to derive an estimate for
ij

1 = 7 = 1. For the other boundaries, the estimate can be obtained in the same way.
For x = (ay,z2) € 7§, we have

ki < CR Y@M ez om [0 | goary, 2.5 <s <3

N h ou”
it anws) = 5 (T The" ) (15 )

Oay
h 2 ar+h , 1 zro+h ,
R A S A G e

ag zo—h

L e — 2]\

Z _ P2 = T\ gU Y da!

5 / (1 . )8:1:1 (21, x5) das.
zo—h

Using the Cauchy—Schwarz inequality and bounding the last term by its maximum, we obtain

*lc(

| (an, 22)] < CllG" || L2 ((apanth) x (@2 — o+ b [l 01 @0 -

Summing over the mesh v, leads to
I lle, < CBMY21GF ] L2 (arantm) x (eap 1uF | o1 @n)-
Using the known inequality [14]
Ifllz20,n) < CB (1 fll 70,1, 0<h<l, r>1/2,
and the embedding theorem
¥l crary < Cllub|lgsany, 5> 2,
gives
s, < Chllg® I ar@m lu [ ery, — 7>1/2,  s>2.
From this, by putting » = s — 2, we have
(5.5) 1 Ml < Chllg* -2 (quy llu" lwg r), 25 <5 <3.

In a similar way we can estimate the term |**¥|.
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Next, we consider the lower left boundary point (ay, ¢)

o) = (121 o) (22 28 o B (rraga) (22 2.

and obtain, as in the previous case,

|M**k(ak70)| < C||qk||L2((ak,ak+h)x(c,c+h))||Uk||01(m)-
Further,
0¥ L2 ((arsantm) < (eern)) < @7 Lzry S N N emzqory, s> 2,
and
w01 ary < Cllub|lgrs ey, s> 2.
Therefore,
(5.6) |M**k| < CquHHS*?(Qk')||UHHS(Q’€)7 T e %157 §>2.

Let us now estimate the term
Ck = (Tlgiak)uk - Tl?i(akuk)a
which we will present in the form
¢k = Cfo + C§07 HS 7§—i,1 U ’Y:’f—m,

where

Cfo = (Tkzz‘ak)uk - (Tkziak)(Tl?iuk)
and

Cgo = (Tlgiak)(Tsz‘uk) - Tkzi(akuk)‘

For the estimate of (f;), we will focus on the case i = 2. Using the representation

xo+h
1 _ !
cfo<ak,x2>=<T,?2ak>(uk<ak,:c2>—h / (1= 2 ) kv ag) sy

1 xo+h
:(T,?zak)g / ( |x2—x2|) (ar, w2) — u*(ag, 24)) da
$2—h
1 xzo+h
:(TI?QQk)E / ( |x2—x2|> ak,xz)d%df/z/a
ajth
we can write
8u ouk
‘Cfo(ak,bﬂ < C”O‘k”C(F +—(ag, 25) dvy dey < C||a HC(F
11 Oxo 11 8x 2(cd)
ouF ouk
< Ch1/2 k i < Ch1/2 k el
< la*llown) e I la®llern) 923 w4172

< CR2 [l [6® 172y < OBl et 1 [ yyzrsr gy
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for 7 > 1/2. The embedding VV;f?’/2 C C holds for s > 2.5, s = 2r + 1. Moreover,
k 1k k
ICollg, < OH oM lypsosva e bz 25< 5 <3,

and (5, is a bounded bilinear functional of (a*,u*) € W[ (T5_, ;) x W%, (T5_, ;), which
: 20, :

vanishes when u* or o constants. Using the bilinear version of the Bramble—Hilbert

Lemma [14], after summation over the mesh V:I)f_i, ; We obtain

||C§0||7§7i’j < C’h’””"”ozkva;(rg;i’j)||Uk||wf’27q2 s,y 0<r=1L0<p=<l ¢>2
2

For0<r<1landl— % < p < 1, the following embeddings hold
T3k "k a P (Tk
Wy (Fs—i,j) - Wq (F3—i,j) and W, (F3—i,j) - W% (F3—i,j)'

It follows that

k
(K|t

k TP ok
S CR™Plla”|| i1 ’
||CQO||’}/§,LJ‘ — || ||W2+2 é(l"’;ii’j) W, a4 (Fg—i,j)
Using embeddings and trace theorems [18] we obtain
k r+p k k
<
HCQOH'yé“,iJ < Ch HOé HW;+%7%(F§%J)HU ||W2p+%+%(9k)

< OhTerHakHWrw*% ||uk||W2p+7~+1(Qk)-

2 ( 377;,1')
Settings r + p = s — 1, produces

IC5o s, < CR M|l s ey, 2< 5 <3,

> “(T5_, ;)

and summing the inequalities for (}; and (5, leads to
€M s, , < CR* by s ry, 25 <s <3
67 Vg = @ llwg=er2 e I vz @), 2 5% 9

The term (¥ can be represented as
G = (T o)k = TEF(ehuh) = ¢ + ¢ weny,
where
b= (o) Wk — (T h)

and

b = (T o) (T ) = T (o uh).
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Let us now consider the lower left point. Then,

ar+h

k 24 oy 2 T] — ay k koot /
al =T« )E 1 - h u*(ak, c) —u'(zy,c) | do)
ag
9 ap+h , 1/18 &
T — ay u
= ‘(Tkziiak)h / <1 - = h > 87331(55/1/70)(195/1 da
ag ag
ouF ouF
< ChM?| ol ors, i N < Chllo* g, N —
2(ak,ar 2 (@K ;0K
k
<Ch||0&k|| k ai <Ch||0£k|| 2r—1/2 ||Uk|| r+1/241 .
> c(ryy) 5301 W7'+1/2(Qk) - Wy, (F’f1) W, (£2F)
2

< Ohlla® | yzrvrz o 1 lyzre gy, 7> 1/2,
and, setting 2r + 1 = s,

(CH1 < Chlla* vyt lwsany, 5>2,  w ek,

Now, ¢}, is bounded bilinear functional of (a*,u*) € W7 (T5_, ;) x W%, (T5_, ;) which
20, ,

vanishes when u* or o* are constants. Hence,

(Chl < OMlo oy Ity 5>2,  zenl,
that is,
(5.8) G < Chllat lygs-srny ¥ lwgaey, s>2  zeql

The term x* can be estimated as follows. Let us denote

hi=1o) = [ aa)de = Glo(0) + o).

For r > 0.5, I;(g) is a bounded linear functional of g € H"(0, k) which vanishes when
g(x) = 1 and g(z) = x. Using the Bramble-Hilbert Lemma [9] we obtain

‘Il| S Chr+1/2|g|H7‘(0’h)’ 05 <r S 2,

whereby it follows that

Schr|g|Hr(0’1), 05 <r <2

/Olg(x)dx—h{g(;)—kyfg(ih)%-g(;)]

=1

From this inequality, using properties of multipliers in Sobolev spaces [19], we immediately
obtain that

(@) < CR || T8 (@, ™ O g o

< CR || TEB @ ) g ps iy 107 Ol grpany . 1<r <2,
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when z € 71 3> While for z € e "3, analogous inequalities hold. After summation over
the mesh 71, 3_j We obtain

e, < o8t ool gy, 1< <2

e,

Finally, using the trace theorem for anisotropic Sobolev spaces [18] and denoting r = s — 1,

00ty < OB s, oo sy, 258

Let us now estimate ||ﬁfj ||H1/2(,Yk— )" Using Lemma 4.6 from [11] we obtain
3—4,

) dut
<ax“<pﬁt;;z>> ‘WT(FS )

k
(‘9 <p§ia“ )) . 0<r<05.
8x3_i 8213,’ W27'+1/2(Qk)

=k +1/2
|T]ii|W21/2(,y§:i k) S Ch" /

< Ch7'+1/2

Using the inequality [21]

e[ Fllwy 0,1)5 0<r<0.5,
1 _
[ F N 2,0,) < C el/? 10g5||F||W21/2(0,1)’ r =05,

51/2||F||W21/2(0)1), r>0.5,
where 0 < € < 1, we have
by ) )’
Tr3_ 1—|—h/2 1—333_2*—}1,/2 "
zE€Yy. 3 i,k 9
0 ouF
< CHHog H (5= (i) H
3—i v W;(Fg—i,k)
1 k
< Ooprtt logH< 9 (pfia“ ))H . 0<r<05
h angi 8.% W;“/Q(Qk)

and

hoX <x32+h/2 1—x31i—h/2) (%)

TE€YE T, )

2
< Ch?log® H( (pg. 8“k)> H .
h 81'3 i E)xl W21(Qk)

Setting r 4+ 2.5 = s and using properties of multipliers in Sobolev spaces, we immediately
obtain that

(5.9) ||775||W21/‘2(7§:i1k)) < Ch*? log%Hp?i”W;‘*l(Qk)Hukszs(Qk)v
for 2.5 < s < 3, and
(5.10) 175 7,12

3/2
(vEm, ) S Ch (log )™~ PG llwz om lullws @)
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This completes the proof of the theorem. O
Convergence rate estimates of the form

lu = vl am@,) < CR™|lull gs (o), m<s<m-+r,

are often called “compatible with the smoothness of the solution”; see, e.g., [9]. Here u is
the solution of the boundary-value problem defined in the domain €2, v is the solution of the
corresponding finite difference scheme defined on the mesh §2;, C €2, h is the discretization
parameter (mesh size), r is a given constant (the highest possible order of convergence), H*(£2)
is a Sobolev space, and H™(£2},) is a discrete Sobolev space of mesh functions. In such a
manner, the error bounds obtained in Theorem 5.3 are compatible with the smoothness of the
solution up to a slowly increasing logarithmic factor of the mesh size.

6. The case of non-coercive operator. Let us now consider the case when the coercive-
ness condition (3.2) is not satisfied. For the sake of simplicity we assume that

6.1) BY(xg, 2h) = B2(xh, z2).

Hence, the operator L is selfadjoint. We deduce that the operator L + 1 is selfadjoint and
positive definite, so all its eigenvalues are real and positive and their only point of accumulation
is +o00. It follows that all eigenvalues of the operator L are real, larger than —x, and their
only point of accumulation is +o0o. Therefore, the operator L has a finite number of negative
eigenvalues. Denoting the eigenvalues of L by \;, 7 = 1,2, ..., we conclude that there is an
index [ such that

K< A< AL SN <0< N4 S

The corresponding eigenvectors u; = (u},u?) are orthogonal in the inner product (-, ) 2. Let

us assume that 0 is not an eigenvalue of L and define the norm ||u|| pyr; := (L4 &I)u, u)*/2.
Then, the inverse operator L ! exists and applying it to the right-hand side of (2.1)

=L7'f,
one has

lullsnr = 1L fllLnr-

Using Parseval’s equality, we immediately obtain

|u||w{§@ W(fi) } {i(
(E) e

)

A+ K
N

< max 1)1,
i

where the f; are the Fourier coefficients of f: f; = (f,u;),i =1,2,.
Let us prove that the quotient "\ +”‘ is bounded. Indeed, for 1 <7 <[ we have

i + K :)\i+liz K —1§i—1,
Ai Al Al A
while fori > 1+ 1
)\+/@:>\i+f€:£ 1< K1
A i Ai AL+t
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The previous relations yields the following a priori estimate

(6.2) lullgnr < callfll(parn—

where

K
cy =max 4 — — 1, +1
! {|)\z| >\l+1 }

const.
min; ||

Note that the constant ¢4 behaves as
in modulus approaches zero.
In the discrete case similar results are obtained. Therefore,

and tends to infinity as the smallest eigenvalue

(6.3) ol it < sl Fllcnp+an)-1s

where

= -
05:max{—1 —|—1}.
P Y

For the operator L, + kI, the corresponding bilinear form is
an(v,w) = [(Lp + RIp)v,w] = ap(v, w) + £[v, w].
Equation (4.3) and Lemma 3.1 imply

(6.4) el [Vl < \WIIL, 4an, < erllvllz

where cg = micy = c3 + k.
Applying (6.3) to (5.1) and using (6.4) we can write

1), w]
sup ——————
w0 |[w] |Lh+l~£1h

)

Cs
[ < 1] (Ly+51,
\f G PRI G
whereby, in the same manner as in the proof of Theorem 5.3, one obtains an a priori estimate

of the form (5.2). Notice that the constant C' in this estimate now depends on cs5.
In such a manner, we have proved the following assertion.

THEOREM 6.1. Let the conditions (4.1) and (6.1) hold and let 0 neither be an eigenvalue
of the problem (2.1) nor of the difference problem (4.3). Then, the solution of the finite
difference scheme (4.3) converges to the solution of the boundary-value problem (2.1)—(2.5)
and the error bounds (5.3) and (5.4) hold.

7. Numerical example. The following numerical experiment aims at assessing the
accuracy of the finite difference. The test example is the problem (2.1)—(2.5) with pf-?j =1,

F=0,Q' = (-3,-1) x (=3,3),and 2 = (1, 3) x (—3,3):

2,,1 2,,1
Ou O g+ 29—a2), wel

C 022 04l
0%u?  0%u?
T 99— 2(9 — 0?
1
ak:27 /Bk(x27x/2):—(9—x%)7 k:1a27

16
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TABLE 7.1
The experimental error results and the temporal convergence orders.

b | e,y Bewo | IeMlioe Rrew | le®lmw, e

271 | 2.5149e+00 1.95 5.8566e+00 2.08 6.4597e+00 2.18
2| 6.5092¢-01 1.98 1.3813e+00 2.05 1.4234e+00 2.09
31 1.6419e-01 1.99 3.3148e-01 2.03 3.3423e-01 2.04

4| 4.1140e-02 1.99 8.0938e-02 2.01 8.1113e-02 2.02
51 1.0291e-02 1.99 1.9981e-02 2.00 1.9992e-02 2.01
6| 2.5731e-03 1.99 4.9629¢-03 2.00 4.9636e-03 2.00
7| 6.4330e-04 1.2366e-03 1.2367e-03

with exact solution
u(z,y) = (9—23)(9—123), e U

The problem (2.1)—(2.5) is approximated by the finite-difference scheme (4.3). Since the input
data are smooth functions, Steklov averaging is not applied. The errors were estimated in the
norms ”'Hc@h)» B ||L2(wh)’ and || ||H1(@h). The convergence order was estimated in the spaces

C(wn), L*(@p), and H' (&y,). The numerical experiment confirms the theoretical results; see
Table 7.1 and Figure 7.1.

FIG. 7.1. Graphics of the approximation with step h = 274,
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